ICML2016
Understanding and Improving Convolutional Neural Networks via
Concatenated Rectified Linear Units
本文在深入分析CNN网络内部结构,发现在CNN网络的前几层学习到的滤波器中存在负相关。
they appear surprisingly opposite to each other, i.e., for each filter, there does exist another filter that is almost on the opposite phase
下图说明在第一卷积层,蓝色的直方图分布以-0.5为中心点,对称均匀分布,也就是说有较多成对的滤波器。越到后面的层,蓝色的直方图分布越集中,成对的滤波器越少。
也就是说学习到的滤波器存在冗余。对此我们设计了CReLU, It simply makes
an identical copy of the linear responses after convolution, negate them, concatenate both parts of activation, and then apply ReLU altogether
和其他方法结果对比
CReLU 的重构很好