CRelu 激活函数

ICML2016

Understanding and Improving Convolutional Neural Networks via
Concatenated Rectified Linear Units

本文在深入分析CNN网络内部结构,发现在CNN网络的前几层学习到的滤波器中存在负相关。
they appear surprisingly opposite to each other, i.e., for each filter, there does exist another filter that is almost on the opposite phase

这里写图片描述

下图说明在第一卷积层,蓝色的直方图分布以-0.5为中心点,对称均匀分布,也就是说有较多成对的滤波器。越到后面的层,蓝色的直方图分布越集中,成对的滤波器越少。
这里写图片描述

也就是说学习到的滤波器存在冗余。对此我们设计了CReLU, It simply makes
an identical copy of the linear responses after convolution, negate them, concatenate both parts of activation, and then apply ReLU altogether
这里写图片描述
这里写图片描述

和其他方法结果对比
这里写图片描述

CReLU 的重构很好

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值