【控制】《最优控制理论与系统》-胡寿松老师-第2章-最优控制中的变分法

本文探讨了最优控制理论中的变分法,包括泛函与变分的基础概念、欧拉方程及其应用条件,以及如何使用变分法解决末端时刻固定的最优控制问题。文中还介绍了角点条件和内点约束条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第1章回到目录第3章

第2章 最优控制中的变分法

2.1 泛函与变分

2.1.1 线性赋范空间

2.1.2 泛函及其定义域

2.1.3 泛函的变分

泛函的变分与函数的微分,其定义几乎完全相当。

定义2-13

J ( x ) J(x) J(x) 是线性赋范空间 R n R^n Rn 上的连续泛函,若其增量可表示为
Δ J ( x ) = J ( x + δ x ) − J ( x ) = L ( x , δ x ) + r ( x , δ x ) \begin{aligned} \Delta J(x) &= J(x + \delta x) - J(x) \\ &= L(x, \delta x) + r(x, \delta x) \end{aligned} ΔJ(x)=J(x+δx)J(x)=L(x,δx)+r(x,δx)

式中 L ( x , δ x ) L(x, \delta x) L(x,δx) 是关于 δ x \delta x δx 的线性连续泛函, r ( x , δ x ) r(x, \delta x) r(x,δx) 是关于 δ x \delta x δx 的高阶无穷小,则
δ J = L ( x , δ x ) \delta J = L (x, \delta x) δJ=L(x,δx)

称为泛函 J ( x ) J(x) J(x) 的变分。

泛函的变分就是泛函增量的线性主部。当一个泛函具有变分时,也称该泛函可微。像函数的微分一样,泛函的变分可以利用求导方法来确定。

2.1.4 泛函极值与变分引理

2.2 欧拉方程

2.2.1 无约束泛函极值的必要条件

定理2-6

对于无约束泛函极值,使二次型性能泛函取极致的必要条件,是轨线 x ( t ) x(t) x(t) 满足下列欧拉方程:
∂ L ∂ x − d d t ∂ L ∂ x ˙ = 0 \frac{\partial L}{\partial x} - \frac{d}{dt} \frac{\partial L}{\partial \dot{x}} = 0 xLdtdx˙L=0

求解上式欧拉方程所需的两点边界值就是问题描述中已知的端点条件:
x ( t 0 ) = x 0 , x ( t f ) = x f x(t_0) = x_0,\quad x(t_f) = x_f x(t0)=x0,x(tf)=xf

2.2.2 有等式约束的泛函极值的必要条件

对于有约束条件 f ( x , x ˙ , t ) = 0 f(x, \dot{x}, t) = 0 f(x,x˙,t)=0,使泛函取极值的必要条件,是轨线 x ( t ) x(t) x(t) 满足下列欧拉方程:
∂ L ∂ x − d d t ∂ L ∂ x ˙ = 0 \frac{\partial L}{\partial x} - \frac{d}{dt} \frac{\partial L}{\partial \dot{x}} = 0 xLdtdx˙L=0

其中, L ( x , x ˙ , λ , t ) = g ( x , x ˙ , t ) + λ T ( t ) f ( x , x ˙ , t ) L(x, \dot{x}, \lambda, t) = g(x, \dot{x}, t) + \lambda^T(t) f(x, \dot{x}, t) L(x,x˙,λ,t)=g(x,x˙,t)+λT(t)f(x,x˙,t)

2.2.3 泛函极小值的充分条件

由于欧拉方程只是泛函能取极值的必要条件。下面给出泛函取极值的充分条件。

(1)无约束情况,除欧拉方程成立外,还需以下三个勒让德条件之一成立,
[ ∂ 2 L ∂ x 2 ∂ 2 L ∂ x ∂ x ˙ ( ∂ 2 L ∂ x ∂ x ˙ ) T ∂ 2 L ∂ x ˙ 2 ] > 0 \left[\begin{matrix} \frac{\partial^2 L}{\partial x^2} & \frac{\partial^2 L}{\partial x \partial \dot{x}} \\ (\frac{\partial^2 L}{\partial x \partial \dot{x}})^T & \frac{\partial^2 L}{\partial \dot{x}^2} \\ \end{matrix}\right] > 0 [x22L(xx˙2L)Txx˙2Lx˙22L]>0


∂ 2 L ∂ x 2 − d d t ∂ 2 L ∂ x ∂ x ˙ ≥ 0 , ∂ 2 L ∂ x ˙ 2 > 0 \frac{\partial^2 L}{\partial x^2} - \frac{d}{dt}\frac{\partial^2 L}{\partial x \partial \dot{x}} \ge 0, \quad \frac{\partial^2 L}{\partial \dot{x}^2} > 0 x22Ldtdxx˙2L0,x˙22L>0


∂ 2 L ∂ x 2 − d d t ∂ 2 L ∂ x ∂ x ˙ > 0 , ∂ 2 L ∂ x ˙ 2 ≥ 0 \frac{\partial^2 L}{\partial x^2} - \frac{d}{dt}\frac{\partial^2 L}{\partial x \partial \dot{x}} > 0, \quad \frac{\partial^2 L}{\partial \dot{x}^2} \ge 0 x22Ldtdxx˙2L>0,x˙22L0

(2)有约束情况,相同的勒让德条件,只是 L L L 不同, L L L 是构造出来的含有拉格朗日乘子向量 λ \lambda λ 的泛函。

2.3 横截条件

2.3.1 末端时刻固定时

横截条件的一般表达式为
( ∂ L ∂ x ˙ ) T ∣ t f δ x ( t f ) − ( ∂ L ∂ x ˙ ) T ∣ t 0 δ x ( t 0 ) = 0 (\frac{\partial L}{\partial \dot{x}})^T |_{t_f} \delta x(t_f) - (\frac{\partial L}{\partial \dot{x}})^T |_{t_0} \delta x(t_0) = 0 (x˙L)Ttfδx(tf)(x˙L)Tt0δx(t0)=0

2.3.2 末端时刻自由时

(1)起点固定,末端自由
L − x ˙ T ( t ) ∂ L ∂ x ˙ ∣ t f = 0 ( ∂ L ∂ x ˙ ) ∣ t f = 0 x ( t 0 ) = x 0 } \left.\begin{aligned} L - \dot{x}^T(t) \frac{\partial L}{\partial \dot{x}} |_{t_f} = 0 \\ (\frac{\partial L}{\partial \dot{x}}) |_{t_f} = 0 \\ x(t_0) = x_0 \\ \end{aligned}\right\} Lx˙T(t)x˙Ltf=0(x˙L)tf=0x(t0)=x0

(2)起点固定,末端受约束
[ L + ( c ˙ − x ˙ ) T ∂ L ∂ x ˙ ∣ t f = 0 x ( t f ) = c ( t f ) x ( t 0 ) = x 0 } \left.\begin{aligned} [L + (\dot{c} - \dot{x})^T \frac{\partial L}{\partial \dot{x}} |_{t_f} = 0 \\ x(t_f) = c(t_f) \\ x(t_0) = x_0 \\ \end{aligned}\right\} [L+(c˙x˙)Tx˙Ltf=0x(tf)=c(tf)x(t0)=x0

2.3.3 初始时刻自由时

(1)末端固定,起点受约束
[ L + ( Ψ ˙ 0 − x ˙ ) T ∂ L ∂ x ˙ ] ∣ t 0 = 0 x ( t 0 ) = Ψ 0 ( t 0 ) x ( t f ) = x f } \left.\begin{aligned} [L + (\dot{\Psi}_0 - \dot{x})^T \frac{\partial L}{\partial \dot{x}}] |_{t_0} = 0 \\ x(t_0) = \Psi_0(t_0) \\ x(t_f) = x_f \\ \end{aligned}\right\} [L+(Ψ˙0x˙)Tx˙L]t0=0x(t0)=Ψ0(t0)x(tf)=xf

(2)末端固定,起点自由
( L − x ˙ T ∂ L ∂ x ˙ ) ∣ t 0 = 0 ( ∂ L ∂ x ˙ ) ∣ t 0 = 0 x ( t f ) = x f } \left.\begin{aligned} (L - \dot{x}^T \frac{\partial L}{\partial \dot{x}}) |_{t_0} = 0 \\ (\frac{\partial L}{\partial \dot{x}}) |_{t_0} = 0 \\ x(t_f) = x_f \\ \end{aligned}\right\} (Lx˙Tx˙L)t0=0(x˙L)t0=0x(tf)=xf

2.4 用变分法解最优控制问题

变分法是处理泛函的数学领域,和处理函数的普通微积分相对。 … 在寻找函数的极大和极小值时,在一个解附近的微小变化的分析给出一阶的一个近似。 它不能分辨是找到了最大值或者最小值(或者都不是)。 变分法在理论物理中非常重要:在拉格朗日力学中,以及在最小作用量原理在量子力学的应用中。

宗量是来自泛函和复变函数的概念,在讨论泛函的连续以及其他性质的时候就要引出这个概念,它的 Taylor 展开式就要这个概念,实际上通俗的理解这个概念,就是自变量。为了防止与函数的自变量引起误会,那就出现这个概念了。

2.4.1 可用变分法求解的最优控制问题

最优控制问题是:寻找最优解 x ∗ ( t ) x^*(t) x(t) u ∗ ( t ) u^*(t) u(t),使系统(微分方程)从已知初态,转移到要求的目标集,并使给定的性能泛函达到极值。

至于变分法,可以结合微分法来理解,就是目标函数相较于自变量(也叫宗量)的微分(也叫变分)为零时,目标函数达到极值。

2.4.2 末端时刻固定时的最优解

(1)末端时刻固定时最优解的必要条件
1)末端受约束
2)末端自由
3)末端固定

(2)末端时刻固定时的最优解的充分条件
等价勒让德条件之一成立

2.4.3 末端时刻自由时的最优解

(1)末端受约束时最优解的必要条件

(2)末端自由时最优解的必要条件

(3)末端固定时最优解的必要条件

2.5 角点条件与内点约束

用变分法求解最优控制时,要求容许轨线 x ( t ) x(t) x(t) 连续可微。

但是实际上常有轨线为分段光滑情况,即 x ( t ) x(t) x(t) 在有限个点上连续但不可微,这种点称为角点。

2.5.1 维尔斯特拉斯-欧特曼条件(角点条件)

∂ L ∂ x ˙ ∣ t 1 − = ∂ L ∂ x ˙ ∣ t 1 + \frac{\partial L}{\partial \dot{x}} | _{t_1^-} = \frac{\partial L}{\partial \dot{x}} | _{t_1^+} x˙Lt1=x˙Lt1+

( L − x ˙ T ∂ L ∂ x ˙ ) ∣ t 1 − = − ( L − x ˙ T ∂ L ∂ x ˙ ) ∣ t 1 + (L - \dot{x}^T \frac{\partial L}{\partial \dot{x}}) | _{t_1^-} = -(L - \dot{x}^T \frac{\partial L}{\partial \dot{x}}) | _{t_1^+} (Lx˙Tx˙L)t1=(Lx˙Tx˙L)t1+

2.5.2 内点约束条件

状态轨线的中间点称为内点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zhao-Jichao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值