【Paper】2019_DoS/数据注入攻击下基于一致性的信息物理系统安全性研究_曹雄

曹雄. DoS/数据注入攻击下基于一致性的信息物理系统安全性研究[D].天津大学,2019.DOI:10.27356/d.cnki.gtjdu.2019.003044.

第2章 拒绝服务攻击下多智能体系统安全性研究

2.1 问题描述

2.1.1 系统模型

考虑领导者-跟随者多智能体系统,其中包含一个领导者和 N N N 个跟随者。领导者编号为0,跟随者编号为 i = 1 , 2 , . . . , N i = 1,2,...,N i=1,2,...,N

跟随者的动态方程可以描述为

x ˙ i ( t ) = A x i ( t ) + B u i ( t ) + B f f ( x i ( t ) , t ) y i ( t ) = C x i ( t ) (2-1) \begin{aligned} \dot{x}_i(t) &= A x_i(t) + B u_i(t) + B_f f(x_i(t), t) \\ y_i(t) &= C x_i(t) \end{aligned} \tag{2-1} x˙i(t)yi(t)=Axi(t)+Bui(t)+Bff(xi(t),t)=Cxi(t)(2-1)

其中,
x i ( t ) ∈ R n \red{x_i(t)} \in \R^n xi(t)Rn 表示第 i i i 个智能体的状态,
y i ( t ) ∈ R m \red{y_i(t)} \in \R^m yi(t)Rm 表示第 i i i 个智能体的测量值,
u i ( t ) ∈ R q \red{u_i(t)} \in \R^q ui(t)Rq 表示第 i i i 个智能体的控制作用。

由于领导者没有入邻居节点,因此其动态方程为
x ˙ 0 ( t ) = A x 0 ( t ) + B f f ( x 0 ( t ) , t ) (2-2) \begin{aligned} \dot{x}_0(t) &= A x_0(t) + B_f f(x_0(t), t) \end{aligned} \tag{2-2} x˙0(t)=Ax0(t)+Bff(x0(t),t)(2-2)

由于智能体之间的信息交换是通过通信网络实现的,并且具有较强的开放性,因此容易受到外部恶意攻击。假设观测器通信网络以及控制器通信网络都可能被攻击者攻击。此外,假定智能体之间的信息传输是同步的,时间间隔为 t k t_k tk,且满足

t k + 1 − t k = δ , k ∈ N 0 t_{k+1} - t_k = \delta, \quad k \in \N_0 tk+1tk=δ,kN0

2.1.2 拒绝服务攻击模型

2.2 安全估计与一致性分析

考虑如下基于观测器的控制器

u i ( t ) = c K ∑ j ∈ N i + a i j ( x ^ j ( t ) − x ^ i ( t ) ) (2-3) \begin{aligned} u_i(t) &= c K \sum_{j \in N^+_i} a_{ij} (\hat{x}_j(t) - \hat{x}_i(t)) \end{aligned} \tag{2-3} ui(t)=cKjNi+aij(x^j(t)x^i(t))(2-3)

其中
x ^ i ( t ) ∈ R n \red{\hat{x}_i(t)} \in \R^n x^i(t)Rn 表示第 i i i 个跟随者的观测器状态,
c \red{c} c 是耦合系数,
K ∈ R q × n \red{K} \in \R^{q \times n} KRq×n 是控制增益。


设计观测器结构如下:

{ x ^ ˙ i ( t ) = A x ^ i ( t ) + B u i ( t ) + θ H ∑ j ∈ N i + a i j ( ω j ( t ) − ω i ( t ) ) + B f f ( x ^ i ( t ) , t ) t ≠ z r x ^ i ( t ) = ζ i ( t ) t = z r (2-4) \left\{\begin{aligned} \dot{\hat{x}}_i(t) &= A \hat{x}_i(t) + B u_i(t) + \theta H \sum_{j \in N^+_i} a_{ij} (\omega_j(t) - \omega_i(t)) + B_f f(\hat{x}_i(t), t) &\quad t\ne z_r \\ \hat{x}_i(t) &= \zeta_i(t) &\quad t = z_r \end{aligned}\right. \tag{2-4} x^˙i(t)x^i(t)=Ax^i(t)+Bui(t)+θHjNi+aij(ωj(t)ωi(t))+Bff(x^i(t),t)=ζi(t)t=zrt=zr(2-4)

其中
{ z r , r ∈ N 0 } \red{\{z_r, r \in \N_0\}} {zr,rN0} 表示 σ − 1 \sigma -1 σ1 个连续成功传输间隔后的紧邻的传输时刻所组成的序列,也就是状态重置时刻。
θ \red{\theta} θ 表示耦合强度,
H ∈ R n × m \red{H} \in \R^{n \times m} HRn×m 表示观测器增益。

ω i ( t ) = C x ^ i ( t ) − y i ( t ) \omega_i(t) = C \hat{x}_i(t) - y_i(t) ωi(t)=Cx^i(t)yi(t)
ζ i ( t ) \red{\zeta_i(t)} ζi(t) 表示第 i i i 个局部状态重置器。


对于线性多智能体系统,状态重置机制的形式如下

{ ζ ˙ i ( t ) = A ζ i ( t ) + B u i ( t ) t ≠ s m ζ i ( t ) = ζ i ( t − ) + R η i ( t − ) t = s m (2-5) \left\{\begin{aligned} \dot{\zeta}_i(t) &= A \zeta_i(t) + B u_i(t) &\quad t \ne s_m \\ \zeta_i(t) &= \zeta_i(t^-) + R \eta_i(t^-) &\quad t = s_m \end{aligned}\right. \tag{2-5} {ζ˙i(t)ζi(t)=Aζi(t)+Bui(t)=ζi(t)+Rηi(t)t=smt=sm(2-5)

η i ( t − ) = C ζ i ( t ) − y i ( t ) \eta_i(t^-) = C \zeta_i(t) - y_i(t) ηi(t)=Cζi(t)yi(t)

η ( t − ) \red{\eta(t^-)} η(t) 表示 η ( t ) \eta(t) η(t) 的左极限。


2.4 数值仿真

单连杆机械手可以建模为由式 (2-1) 和式 (2-2) 表示的多智能体系统,系统

在这里插入图片描述

2.4.1 观测器网络受到攻击下的结果及分析

2.4.1.1 线性多智能体系统

在这里插入图片描述
在这里插入图片描述

程序 main_NoAttack.m

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

程序 main_UnderAttack.m

攻击改成了周期攻击。

在原文给的重构器基础上,我加了一点观测器的东西,能将结果补偿上去

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

Ref


需要程序代码可加+V:Zhao-Jichao
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zhao-Jichao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值