Detr的数据流,详细的维度信息

本文深入探讨Transformer架构,包括Encoder和Decoder的详细工作原理,特别是TransformerDecoder的计算过程。同时,文章阐述了损失函数的计算方法,以及如何进行自定义数据的处理。通过实例解析,帮助读者理解模型的预测输出和训练过程。
摘要由CSDN通过智能技术生成

算法的流程
在这里插入图片描述
在这里插入图片描述
数据的流动
这里是transformer encoder的地方,包含之前的
在这里插入图片描述
transformer dcoder,以及loss的计算,预测的输出
在这里插入图片描述
transformer decoder的详解计算
在这里插入图片描述

loss部分详解
在这里插入图片描述

自定义数据
在这里插入图片描述
结果
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

骨子带刺

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值