本账号之前已推出视觉语言导航(VLN)技术的入门知识整理 。
现在,我们将推出关于VLN技术的梳理文章系列,以下是文章的目录框架。
内容将定期更新,欢迎各位关注并订阅,也期待志同道合的朋友一起参与!
一、基础概念
1. 任务定义与分类
-
VLN定义:明确视觉语言导航的基本概念,解释其在视觉和语言结合导航中的作用.
- 任务分类:
-
根据指令任务分类:按照指令的复杂度、长度等维度划分任务类型.
-
根据场景虚实分类:区分虚拟场景和真实场景中的导航任务,分析各自特点和挑战.
-
根据导航环境分类:如室内、室外、城市、乡村等不同环境下的导航任务.
-
2. 模拟器与数据集
- 常用模拟器:
-
MatterSim:介绍其特点、优势以及在VLN研究中的应用情况.
-
Habitat:阐述其功能、与MatterSim的对比以及在不同场景下的适用性.
-
AirSim:描述其在无人机VLN研究中的作用.
-
-
数据集:列举主要的VLN数据集,说明其规模、特点和对模型训练的重要性.
3. 评估指标
-
成功率相关指标:如导航任务的完成率、到达目标地点的准确度等.
-
效率相关指标:包括导航路径长度、导航时间等,衡量导航效率的高低.
-
路径指令匹配度:评估模型生成的路径与指令描述的路径之间的匹配程度.
二、指令与场景表示
1. 指令表示
-
传统序列模型:RNN/LSTM/GRU/Transformer,分析其在捕捉指令序列依赖关系中的优势与局限.
- 预训练语言模型:
-
BERT及其变体:介绍BERT在指令理解中的应用,以及其变体如何针对VLN任务进行优化.
-
大语言模型:探讨大语言模型在处理复杂指令、生成更准确导航策略方面的潜力.
-
2. 场景表示
-
视觉特征提取:CNN在提取场景图像特征中的作用,如何为导航决策提供视觉信息支持.
- 结构化场景表示:
-
场景图:构建场景图的方法及其在表示场景结构、物体关系中的优势.
-
占据栅格图:描述占据栅格图如何表示场景的可通行区域和障碍物.
-
鸟瞰图:鸟瞰图在提供全局场景视图、辅助规划导航路径中的应用.
-
3. 跨模态融合
-
基于注意力机制的融合:利用注意力机制实现指令与场景信息的深度融合,突出关键信息.
-
跨模态联合编码融合:通过联合编码的方式,将指令和场景信息共同编码,提升模型对导航任务的理解能力.
-
多模态大模型编码融合:结合多模态大模型,实现指令、场景等多种模态信息的高效融合.
4. 历史记忆
-
向量表示:如何用向量表示导航过程中的历史信息,为后续决策提供参考.
-
拓扑图表示:构建拓扑图记录导航路径和场景结构,辅助模型记忆和规划.
三、导航决策
1. 监督学习
- 标签类型:
-
静态标签:如固定的目标位置、可通行区域等,用于指导模型学习基本的导航规则.
-
动态标签:根据导航过程中的实时状态生成的标签,帮助模型适应动态变化的环境.
-
2. 辅助任务
-
进度估计:预测当前导航任务的完成进度,为决策提供时间参考.
-
轨迹重述:对已走过的轨迹进行重述,帮助模型更好地理解和记忆导航路径.
-
跨模态匹配:将指令与场景中的物体、区域等进行匹配,提升导航的准确性.
-
角度预测:预测下一步的导航角度,辅助模型做出正确的转向决策.
-
物体预测:预测场景中可能出现的物体及其位置,提前做出应对策略.
3. 探索与利用
-
回朔:在导航过程中,当遇到错误或困境时,能够回朔到之前的正确路径.
-
环境预探索:在正式导航前,对环境进行预探索,收集更多的场景信息和可能的导航路径.
4. 全局与局部导航
-
局部导航点:确定局部目标点,指导模型在当前区域内的导航决策.
-
全局导航点:设定全局目标点,为整个导航任务提供方向指引.
-
dual-scale导航:结合局部和全局导航点,实现不同尺度下的导航策略优化.
四、数据增强
1. 指令扩充
-
指令拼接:将多个指令片段拼接成更长、更复杂的指令,增加数据的多样性.
-
指令生成:利用生成模型自动生成新的指令,扩充数据集规模.
2. 场景扩充
-
场景编辑:对现有场景进行编辑,如改变物体布局、添加新的物体等,生成不同的场景变体.
-
场景分割与重组:将场景分割成多个部分,然后重新组合,创造出新的场景结构.
五、知识增强
1. 知识图谱
-
场景物体关系:构建知识图谱表示场景中物体之间的关系,如物体的相对位置、功能关系等,为导航决策提供额外的知识支持.
2. 大模型知识注入
-
指令实体识别:利用大模型的知识,准确识别指令中的关键实体,如目标物体、路标等.
-
物体分割与识别:在场景表示中,结合大模型的知识进行物体分割和识别,提高场景理解的准确性.
-
多专家讨论:模拟多专家讨论的过程,整合不同领域的知识,为导航任务提供更全面的决策支持.
六、大模型导航推理
1. 上下游集成方法
-
方法概况:介绍大模型与下游导航任务集成的整体思路和框架.
-
典型模型:列举一些成功的集成模型案例,分析其特点和优势.
-
案例分析:详细分析一个具体的案例,展示大模型在导航推理中的实际应用效果.
2. zero-shot方法
-
方法介绍:解释zero-shot方法在大模型导航推理中的应用,如何实现无监督或少监督的学习.
-
典型模型:列举一些采用zero-shot方法的模型案例,说明其创新之处.
-
案例分析:通过一个案例,展示zero-shot方法在导航任务中的实际表现和效果.
3. 大模型微调
-
方法介绍:阐述大模型微调的原理和步骤,如何根据导航任务的特点对大模型进行优化.
-
典型模型:列举一些经过微调的大模型案例,分析其在导航任务中的优势.
-
案例分析:详细分析一个微调模型的案例,展示其在导航推理中的具体应用和效果.
七、导航能力诊断
1. 指令敏感性
-
方向敏感性:评估模型对指令中方向信息的敏感程度,如对“左转”、“右转”等指令的反应准确性.
-
路标敏感性:衡量模型对指令中路标信息的识别和利用能力,如对“红绿灯”、“路牌”等路标的敏感度.
-
数值敏感性:分析模型对指令中数值信息的处理能力,如对“走10米”、“第三个门”等数值指令的准确性.
2. 错误指令判别
-
错误类型识别:识别指令中的错误类型,如语法错误、逻辑错误等,并分析模型的应对策略.
3. 紧急终止
-
紧急终止机制:介绍模型在遇到紧急情况时的终止机制,如何快速、准确地判断并终止导航任务,以保障安全.
八、模型详解
1. DUET
-
模型介绍:概述DUET模型的基本架构和设计理念.
-
环境与数据准备:说明在DUET模型训练中,环境设置和数据准备的具体要求和步骤.
-
核心代码分析:深入分析DUET模型的核心代码,解释关键算法和实现细节.
-
模型训练:描述DUET模型的训练过程,包括训练策略、参数设置等.
-
案例分析:通过具体的案例,展示DUET模型在导航任务中的应用效果和优势.
2. ArielVLN
-
任务介绍与方法梳理:介绍ArielVLN任务的背景和目标,梳理其采用的方法和技术路线.
-
环境安装与数据准备:详细说明ArielVLN模型训练所需的环境安装步骤和数据准备要求.
-
核心代码分析:深入分析ArielVLN模型的核心代码,解释关键算法和实现细节.
-
模型训练:描述ArielVLN模型的训练过程,包括训练策略、参数设置等.
-
案例分析:通过具体的案例,展示ArielVLN模型在导航任务中的应用效果和优势.