Quantlab整合Alpha158因子集,为机器学习大类资产配置策略做准备(代码+数据)

原创文章第565篇,专注“AI量化投资、世界运行的规律、个人成长与财富自由"。

我们的研报得现工作,用了两篇文章讲数据准备:

【研报复现】年化16.19%,人工智能多因子大类资产配置策略

【研报复现】年化27.1%,人工智能多因子大类资产配置策略之benchmark

今天我们来整理因子集。

研报里没有给出因子细节,我的解读是“根本不重要”。

因此,我就用qlib的Alpha158,结合部分WorldQuant101,还有常用的Ta-lib的技术分析指标来构建因子集。

我把函数集统一了命名,补充了一些函数:Alpha158可以正常工作了:

图片

from datafeed.factor.alpha import AlphaBase


class Alpha158(AlphaBase):

    def get_fields_names(self):
        # ['CORD30', 'STD30', 'CORR5', 'RESI10', 'CORD60', 'STD5', 'LOW0',
        # 'WVMA30', 'RESI5', 'ROC5', 'KSFT', 'STD20', 'RSV5', 'STD60', 'KLEN']
        fields = []
        names = []

        # kbar
        fields += [
            "(close-open)/open",
            "(high-low)/open",
            "(close-open)/(high-low+1e-12)",
            "(high-greater(open, close))/open",
            "(high-greater(open, close))/(high-low+1e-12)",
            "(less(open, close)-low)/open",
            "(less(open, close)-low)/(high-low+1e-12)",
            "(2*close-high-low)/open",
            "(2*close-high-low)/(high-low+1e-12)",
        ]
        names += [
            "KMID",
            "KLEN",
            "KMID2",
            "KUP",
            "KUP2",
            "KLOW",
            "KLOW2",
            "KSFT",
            "KSFT2",
        ]

        # =========== price ==========
        feature = ["OPEN", "HIGH", "LOW", "CLOSE"]
        windows = range(5)
        for field in feature:
            field = field.lower()
            fields += ["shift(%s, %d)/close" % (field, d) if d != 0 else "%s/close" % field for d in windows]
            names += [field.upper() + str(d) for d in windows]

        # ================ volume ===========
        fields += ["shift(volume, %d)/(volume+1e-12)" % d if d != 0 else "volume/(volume+1e-12)" for d in windows]
        names += ["VOLUME" + str(d) for d in windows]

        # ================= rolling ====================

        windows = [5, 10, 20, 30, 60]
        fields += ["shift(close, %d)/close" % d for d in windows]
        names += ["ROC%d" % d for d in windows]

        fields += ["mean(close, %d)/close" % d for d in windows]
        names += ["MA%d" % d for d in windows]

        fields += ["std(close, %d)/close" % d for d in windows]
        names += ["STD%d" % d for d in windows]

        #fields += ["slope(close, %d)/close" % d for d in windows]
        #names += ["BETA%d" % d for d in windows]

        fields += ["ts_max(high, %d)/close" % d for d in windows]
        names += ["MAX%d" % d for d in windows]

        fields += ["ts_min(low, %d)/close" % d for d in windows]
        names += ["MIN%d" % d for d in windows]

        fields += ["quantile(close, %d, 0.8)/close" % d for d in windows]
        names += ["QTLU%d" % d for d in windows]

        fields += ["quantile(close, %d, 0.2)/close" % d for d in windows]
        names += ["QTLD%d" % d for d in windows]

        #fields += ["ts_rank(close, %d)" % d for d in windows]
        #names += ["RANK%d" % d for d in windows]

        fields += ["(close-ts_min(low, %d))/(ts_max(high, %d)-ts_min(low, %d)+1e-12)" % (d, d, d) for d in windows]
        names += ["RSV%d" % d for d in windows]

        fields += ["ts_argmax(high, %d)/%d" % (d, d) for d in windows]
        names += ["IMAX%d" % d for d in windows]

        fields += ["ts_argmin(low, %d)/%d" % (d, d) for d in windows]
        names += ["IMIN%d" % d for d in windows]

        fields += ["(ts_argmax(high, %d)-ts_argmin(low, %d))/%d" % (d, d, d) for d in windows]
        names += ["IMXD%d" % d for d in windows]

        fields += ["correlation(close, log(volume+1), %d)" % d for d in windows]
        names += ["CORR%d" % d for d in windows]

        fields += ["correlation(close/shift(close,1), log(volume/shift(volume, 1)+1), %d)" % d for d in windows]
        names += ["CORD%d" % d for d in windows]

        fields += ["mean(close>shift(close, 1), %d)" % d for d in windows]
        names += ["CNTP%d" % d for d in windows]

        fields += ["mean(close<shift(close, 1), %d)" % d for d in windows]
        names += ["CNTN%d" % d for d in windows]

        fields += ["mean(close>shift(close, 1), %d)-mean(close<shift(close, 1), %d)" % (d, d) for d in windows]
        names += ["CNTD%d" % d for d in windows]

        fields += [
            "sum(greater(close-shift(close, 1), 0), %d)/(sum(abs(close-shift(close, 1)), %d)+1e-12)" % (d, d)
            for d in windows
        ]
        names += ["SUMP%d" % d for d in windows]

        fields += [
            "sum(greater(shift(close, 1)-close, 0), %d)/(sum(abs(close-shift(close, 1)), %d)+1e-12)" % (d, d)
            for d in windows
        ]
        names += ["SUMN%d" % d for d in windows]

        fields += [
            "(sum(greater(close-shift(close, 1), 0), %d)-sum(greater(shift(close, 1)-close, 0), %d))"
            "/(sum(abs(close-shift(close, 1)), %d)+1e-12)" % (d, d, d)
            for d in windows
        ]
        names += ["SUMD%d" % d for d in windows]

        fields += ["mean(volume, %d)/(volume+1e-12)" % d for d in windows]
        names += ["VMA%d" % d for d in windows]

        fields += ["std(volume, %d)/(volume+1e-12)" % d for d in windows]
        names += ["VSTD%d" % d for d in windows]

        fields += [
            "std(abs(close/shift(close, 1)-1)*volume, %d)/(mean(abs(close/shift(close, 1)-1)*volume, %d)+1e-12)"
            % (d, d)
            for d in windows
        ]
        names += ["WVMA%d" % d for d in windows]

        fields += [
            "sum(greater(volume-shift(volume, 1), 0), %d)/(sum(abs(volume-shift(volume, 1)), %d)+1e-12)"
            % (d, d)
            for d in windows
        ]
        names += ["VSUMP%d" % d for d in windows]

        fields += [
            "sum(greater(shift(volume, 1)-volume, 0), %d)/(sum(abs(volume-shift(volume, 1)), %d)+1e-12)"
            % (d, d)
            for d in windows
        ]
        names += ["VSUMN%d" % d for d in windows]

        fields += [
            "(sum(greater(volume-shift(volume, 1), 0), %d)-sum(greater(shift(volume, 1)-volume, 0), %d))"
            "/(sum(abs(volume-shift(volume, 1)), %d)+1e-12)" % (d, d, d)
            for d in windows
        ]
        names += ["VSUMD%d" % d for d in windows]

return fields, names

计算出来Qlib的159个因子,

图片

其实因子就是原始数据的数学变形。

在线性模型里还需要分析“多重共线性”的问题,但在机器学习里,反正就是一股脑进去,树模型还能把重要的特征筛选出来。

接下来就是数据集做一个量纲的统一,预处理之类的。

Qlib里有类似的预处理函数:

图片

def __call__(self, df):

        def normalize(x, min_val=self.min_val, max_val=self.max_val):

            return (x - min_val) / (max_val - min_val)

这里的预处理需要格外小心,不能引入未来函数。

本质是是做归一化,避免量纲不同,模型训练失真。

研报结论是CSMinMax效果最好,所谓CSMinMax就是在截面(时间,即calc_by_date),也就是每天对因子数据进行MinMax的归一化。——这一点上符合逻辑,从机器学习的角度,每天的数据是一个样本,而样本进行minmax,相对大小没有发生改变,只是“归一化”到0-1之间,更符合特定分布。

def cs_minmax(se: pd.Series):
    return (se - se.min()) / (se.max() - se.min())

图片

后续可以引入lightGBM机器学习模型,进行训练和策略开发。

有同学在问的优惠券:

阅读

《特斯拉传-万物皆我》,这本书读完了。

与其说读完了,不如说翻完了。

这本书确实写得一般,不同于传统传记,他的写作,更像是要与特斯拉融入一体,那种半梦半醒,活在自我构建的世界,那种感觉。

一个不为名,不为钱的怪才,狂热的科学实验爱好者。

注定是孤独的。

普通人无法成为特斯拉、图灵,我想也不愿意身边的人,成为他们。

但我们有可能“成为”爱迪生。——实用主义,解决问题,有美满的家庭,儿女成群,世人拥戴。

我想,只是欲望不过度,不伤害其他人,一定的财富与名利是好的。

本周要的书,估计是《点亮黑夜——爱迪生传》。

由于有这一次教训,我特意在电子书平台看了半章,确保内容不会再出现这样的问题。

“FIRE与退休”

之前聊过比较多“FIRE——财务自由,提前退休”的方式,也聊过“500,10%”的财务自由逻辑。

现在把这种方式,归入ABCZ的Z计划。

因为所谓退休,是一种心态。

即你不为设想中的明天而放弃今天的生活,就是退休的状态。

比如,你能很大程度上享受当下在做的事情,或者工作,就是一个退休之状态。

历史文章:

【研报复现】年化27.1%,人工智能多因子大类资产配置策略之benchmark

AI量化实验室——2024量化投资的星辰大海

### 回答1: PSPICE 17.2 是一种用于电子电路仿真和分析的软件工具。下面是一份简单的 PSpice 17.2 使用初级教程: 1. 安装和启动:首先,你需要下载并安装 PSpice 17.2 软件。安装完成后,双击图标启动软件。 2. 创建电路:在软件界面上,选择“文件”>“新建”,然后在电路编辑器中创建你的电路。你可以从元件库中选择组件,并将其拖放到画布上。连接元件的引脚以构建电路。 3. 设置元件参数:双击元件以打开元件参数设置对话框。在对话框中,设置元件的值、名称和其他参数。对于电阻、电容等基本元件,可以直接输入数值。 4. 设置仿真配置:选择“仿真”>“设置和校验”,然后在仿真设置对话框中选择仿真的类型和参数。你可以选择直流分析、交流分析、暂态分析等。设置仿真参数后,点击“确定”。 5. 运行仿真:选择“仿真”>“运行”来启动仿真。在仿真过程中,软件将模拟电路的响应,并将结果输出到仿真波形窗口中。 6. 查看仿真结果:在仿真波形窗口中,你可以查看各个元件的电流、电压等参数随时间变化的波形。你还可以对波形进行放大、缩小、平移等操作,以更详细地分析电路的性能。 7. 保存和导出结果:在仿真过程中,你可以选择将结果保存为文件或导出为其他格式,如图像文件或数据文件。 以上是 PSpice 17.2 使用初级教程的基本步骤。随着实践的深入,你可以进一步了解复杂电路的建模和分析方法,并尝试更高级的功能和技术。 ### 回答2: PSPICE 17.2是一款电子电路仿真软件,用于对电路进行分析和验证。以下是PSPICE 17.2的使用初级教程: 1. 下载和安装:在官方网站上下载PSPICE 17.2并进行安装。 2. 组件库:打开PSPICE软件后,点击“Capture CIS”图标,进入组件库界面。选择适当的电子元件,如电阻、电容、二极管等,将它们拖放到画布上。 3. 电路连接:在画布上拖放所需元件后,使用导线工具连接它们。点击导线图标,选择合适的连接方式,并将其拖动到适当的端口上。 4. 参数设定:双击元件,弹出元件属性对话框。在这里设置元件的数值,例如电阻的阻值、电容的电容值等。 5. 电源设置:在画布上点击右键,选择“Power Sources”,然后选择适当的电源,如直流电源或交流电源。设置电源的电压或电流数值。 6. 仿真设置:点击画布上方的“PSpice”选项,选择“Edit Simulation Profile”打开仿真配置对话框。在仿真配置中,设置仿真参数,如仿真类型(直流、交流、脉冲等)、仿真时间等。 7. 仿真运行:在仿真配置对话框中点击“Run”按钮,开始进行电路仿真运行。仿真完成后,可以查看并分析仿真结果,如电流、电压、功率等。 8. 结果分析:通过菜单栏中的“PSpice>Probe”选项,打开特定信号的仿真结果。通过选择信号节点,可以显示该信号的波形、幅值和频谱等信息。 9. 数据输出:仿真结束后,可以通过“PSpice>Results”菜单栏选项,导出仿真结果到文本文件,以供后续分析。 10. 误差调整:如果仿真结果与预期不符,可以检查电路连接、元件参数等以找出问题。根据需要进行调整,重新运行仿真以验证改进效果。 以上就是PSPICE 17.2使用初级教程的简要介绍。在使用过程中,请参考软件的帮助文件和官方文档,以获取更详细的指导和解决方法。任何新的软件都需要不断的实践和尝试,希望这个教程能对你有所帮助。 ### 回答3: PSPICE 17.2是一款常用的电路仿真软件,用于电路设计和分析。下面是一个简要的PSPICE 17.2的初级教程: 1. 下载和安装:首先,从官方网站下载PSPICE 17.2,并按照安装向导进行安装。安装完成后,打开软件。 2. 创建新工程:在PSPICE 主界面上,点击“File”菜单,然后选择“New Project”来创建一个新的工程。给工程起一个适当的名字,并选择工程的存储位置。 3. 添加电路元件:在工程界面上,点击“Place”图标,然后选择不同的元件来构建你的电路。你可以从库中选择各种电子元件,如电阻、电容、电感等,并将它们拖放到工程界面上。 4. 连接元件:选择“Wire”图标,然后点击元件的引脚来连接它们。确保连接顺序正确,以保证电路的正确性。 5. 设置元件参数:对于每个添加的元件,你需要设置它们的参数。右键点击元件,选择“Edit Propertiess”,然后在弹出的窗口中输入适当的参数值。 6. 添加电源:在电路中添加电源,以提供电路所需的电能。选择“Place”图标,然后选择合适的电源元件并将其拖放到电路中。同样,设置电源的参数值。 7. 设置仿真配置:在工程界面上,点击“PSpice”菜单,然后选择“Edit Simulation Profile”来设置仿真配置参数。你可以选择仿真类型、仿真时间和仿真步长等。 8. 运行仿真:点击“PSpice”菜单,选择“Run”来运行仿真。PSPICE将自动运行仿真并显示结果。 9. 分析和优化:根据仿真结果,可以分析和优化电路的性能。你可以观察电流、电压和功率等参数,以评估电路的性能,并根据需要进行调整。 10. 保存和导出结果:在分析和优化完成后,可以保存你的工程并导出结果。点击“File”菜单,选择“Save Project”来保存工程,然后选择“Outut”菜单,选择“Export”来导出结果。 以上是PSPICE 17.2的初级教程的简要介绍。通过以上步骤,你可以开始使用PSPICE 17.2进行电路设计和仿真。在实践中不断探索和学习,你将成为一个熟练的PSPICE用户。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI量化投资实验室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值