1、最小二乘估计
最小二乘估计最早是由高斯在1795年提出。设状态变量为
X
X
X,观测变量为
Z
Z
Z,观测噪声为
V
V
V,则第
i
i
i次观测可以表示为:
Z
i
=
H
i
X
+
V
i
Z_i=H_iX+V_i
Zi=HiX+Vi
最小二乘估计的目标是找到
X
=
X
^
X=\hat{X}
X=X^使得:
J
(
X
)
=
(
Z
−
H
X
)
T
(
Z
−
H
X
)
J(X) = (Z-HX)^T(Z-HX)
J(X)=(Z−HX)T(Z−HX)
最小。
上式对
X
X
X求偏导,并令之为
0
0
0,可得:
X
^
=
(
H
T
H
)
−
1
H
T
Z
\hat{X}=(H^TH)^{-1}H^TZ
X^=(HTH)−1HTZ
令
X
~
=
X
−
X
^
\tilde{X}=X-\hat{X}
X~=X−X^为估计误差,
则有:
E
[
X
~
]
=
0
E[\tilde{X}]=0
E[X~]=0
E
[
X
~
X
~
T
]
=
(
H
T
H
)
−
1
H
T
R
H
(
H
T
H
)
−
1
E[\tilde{X}\tilde{X}^T]=(H^TH)^{-1}H^TRH(H^TH)^{-1}
E[X~X~T]=(HTH)−1HTRH(HTH)−1
- 当使用单一仪器多次测量时,采用最小二乘估计可以减小估计的方差。( R k , R 为 噪 声 方 差 , k 为 观 测 次 数 \frac{R}{k},R为噪声方差,k为观测次数 kR,R为噪声方差,k为观测次数)
- 但是如果使用不同精度的测量仪器时,采用最小二乘估计可能出现估计方差大于单一传感器方差的情况,这时候就要引入加权最小二乘估计。
2、加权最小二乘估计
加权最小二乘估计引入了权值矩阵
W
W
W,此时
J
(
X
)
=
(
Z
−
H
X
)
T
W
(
Z
−
H
X
)
J(X) = (Z-HX)^TW(Z-HX)
J(X)=(Z−HX)TW(Z−HX)
同上,求得
X
~
=
(
H
T
W
H
)
−
1
H
T
W
Z
\tilde{X}=(H^TWH)^{-1}H^TWZ
X~=(HTWH)−1HTWZ
此时,
E
[
X
~
X
~
T
]
=
(
H
T
W
H
)
−
1
H
T
W
R
W
H
(
H
T
W
H
)
−
1
E[\tilde{X}\tilde{X}^T]=(H^TWH)^{-1}H^TWRWH(H^TWH)^{-1}
E[X~X~T]=(HTWH)−1HTWRWH(HTWH)−1
当
W
=
R
−
1
W=R^{-1}
W=R−1时,
E
[
X
~
X
~
T
]
=
(
H
T
R
−
1
H
)
−
1
E[\tilde{X}\tilde{X}^T]=(H^TR^{-1}H)^{-1}
E[X~X~T]=(HTR−1H)−1取得最小,此时的
X
~
\tilde{X}
X~称为马尔可夫估计。
下面是证明:
正定矩阵
R
R
R可以表示为
S
T
S
S^TS
STS(
S
S
S满秩)
令:
A
=
H
T
S
−
1
A=H^TS^{-1}
A=HTS−1
B
=
S
W
H
(
H
T
W
H
)
−
1
B=SWH(H^TWH)^{-1}
B=SWH(HTWH)−1
则有:
A
B
=
I
AB=I
AB=I
B
T
B
=
(
H
T
W
H
)
−
1
H
T
W
R
W
H
(
H
T
W
H
)
−
1
B^TB=(H^TWH)^{-1}H^TWRWH(H^TWH)^{-1}
BTB=(HTWH)−1HTWRWH(HTWH)−1
由施瓦茨不等式有:
B
T
B
≥
(
A
B
)
T
(
A
A
T
)
−
1
(
A
B
)
=
(
H
T
R
−
1
H
)
−
1
B^TB\geq(AB)^T(AA^T)^{-1}(AB)=(H^TR^{-1}H)^{-1}
BTB≥(AB)T(AAT)−1(AB)=(HTR−1H)−1
即证。
参考文献:卡尔曼滤波与组合导航原理(西工大版)