最小二乘估计

1、最小二乘估计

最小二乘估计最早是由高斯在1795年提出。设状态变量为 X X X,观测变量为 Z Z Z,观测噪声为 V V V,则第 i i i次观测可以表示为:
Z i = H i X + V i Z_i=H_iX+V_i Zi=HiX+Vi
最小二乘估计的目标是找到 X = X ^ X=\hat{X} X=X^使得:
J ( X ) = ( Z − H X ) T ( Z − H X ) J(X) = (Z-HX)^T(Z-HX) J(X)=(ZHX)T(ZHX)
最小。
上式对 X X X求偏导,并令之为 0 0 0,可得: X ^ = ( H T H ) − 1 H T Z \hat{X}=(H^TH)^{-1}H^TZ X^=(HTH)1HTZ
X ~ = X − X ^ \tilde{X}=X-\hat{X} X~=XX^为估计误差,
则有:
E [ X ~ ] = 0 E[\tilde{X}]=0 E[X~]=0
E [ X ~ X ~ T ] = ( H T H ) − 1 H T R H ( H T H ) − 1 E[\tilde{X}\tilde{X}^T]=(H^TH)^{-1}H^TRH(H^TH)^{-1} E[X~X~T]=(HTH)1HTRH(HTH)1

  • 当使用单一仪器多次测量时,采用最小二乘估计可以减小估计的方差。( R k , R 为 噪 声 方 差 , k 为 观 测 次 数 \frac{R}{k},R为噪声方差,k为观测次数 kR,Rk
  • 但是如果使用不同精度的测量仪器时,采用最小二乘估计可能出现估计方差大于单一传感器方差的情况,这时候就要引入加权最小二乘估计。

2、加权最小二乘估计

加权最小二乘估计引入了权值矩阵 W W W,此时
J ( X ) = ( Z − H X ) T W ( Z − H X ) J(X) = (Z-HX)^TW(Z-HX) J(X)=(ZHX)TW(ZHX)
同上,求得 X ~ = ( H T W H ) − 1 H T W Z \tilde{X}=(H^TWH)^{-1}H^TWZ X~=(HTWH)1HTWZ
此时, E [ X ~ X ~ T ] = ( H T W H ) − 1 H T W R W H ( H T W H ) − 1 E[\tilde{X}\tilde{X}^T]=(H^TWH)^{-1}H^TWRWH(H^TWH)^{-1} E[X~X~T]=HTWH)1HTWRWH(HTWH)1
W = R − 1 W=R^{-1} W=R1时, E [ X ~ X ~ T ] = ( H T R − 1 H ) − 1 E[\tilde{X}\tilde{X}^T]=(H^TR^{-1}H)^{-1} E[X~X~T]=HTR1H)1取得最小,此时的 X ~ \tilde{X} X~称为马尔可夫估计。
下面是证明:
正定矩阵 R R R可以表示为 S T S S^TS STS( S S S满秩)
令:
A = H T S − 1 A=H^TS^{-1} A=HTS1
B = S W H ( H T W H ) − 1 B=SWH(H^TWH)^{-1} B=SWH(HTWH)1
则有:
A B = I AB=I AB=I
B T B = ( H T W H ) − 1 H T W R W H ( H T W H ) − 1 B^TB=(H^TWH)^{-1}H^TWRWH(H^TWH)^{-1} BTB=HTWH)1HTWRWH(HTWH)1
由施瓦茨不等式有: B T B ≥ ( A B ) T ( A A T ) − 1 ( A B ) = ( H T R − 1 H ) − 1 B^TB\geq(AB)^T(AA^T)^{-1}(AB)=(H^TR^{-1}H)^{-1} BTB(AB)T(AAT)1(AB)=(HTR1H)1
即证。

参考文献:卡尔曼滤波与组合导航原理(西工大版)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值