在使用CAD模型进行动力学仿真的时候,需要将软件中计算得到的惯性张量转换到自己定义的连杆坐标系下,通常会涉及到共原点坐标系和平移坐标系的转换,下面给出两种情况下的matlab代码,以供参考。
1.共原点坐标系下的转换:
示例:两个共原点坐标系如下所示:
假设刚体在坐标系1中的惯性张量为I_1,坐标系1到坐标系2的旋转矩阵为R,那么通过如下代码可以计算刚体在坐标系2中的惯性张量。
R = [-1 0 0;
0 0 1;
0 1 0];
I2 = R*IVec2so3(I_1)*R';
%% 注意:函数的输入惯性张量元素是从Solidworks中提取得到的,所以在非对称惯性积上添加了负号
function I = IVec2so3(v)
I = [ v(1) -v(2) -v(3);
-v(2) v(4) -v(5);
-v(3) -v(5) v(6);];
end
2.两个平移关系的坐标系下的转换:
假设在solidworks中测量得 刚体质量为m,在坐标系1中的惯性张量为I_1,刚体在坐标系1中的质心位置为[rx,ry,rz],并且关于质心坐标系(与坐标系1对齐)的惯性张量为I_c。坐标系2相对于坐标系1的位置为[0,0,a],那么通过如下代码可以计算刚体在坐标系2中的惯性张量。
% 主要公式为 Huygens-Steiner theorem
% I1 = Ic + m(P'*P*I-P*P')
% I1 = Ic + m*S(P)'*S(P)
% S = [ 0 -x3 x2;
% x3 0 -x1;
% -x2 x1 0]
% I2 = R*I1*R'
% I1*R=I2
P_1 = [rx,ry,rz]';
% inertial tensor w.r.t CoM
Ic1 = IVec2so3(I_1) - m*(P_1'*P_1*eye(3) - P_1*P_1');
% update the new position of CoM
P1 = P_1 - [0,0,a]';
% the tensor we need is
I1 = Ic1 + m*(P1'*P1*eye(3) - P1*P1');