刚体惯性张量在不同坐标系下的转换方法

本文详细介绍了在使用CAD模型进行动力学仿真时,如何在共原点坐标系和带有平移关系的坐标系间转换惯性张量,提供了相应的Matlab代码示例,包括共原点坐标系的直接转换和基于Huygens-Steinertheorem的平移坐标系转换方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在使用CAD模型进行动力学仿真的时候,需要将软件中计算得到的惯性张量转换到自己定义的连杆坐标系下,通常会涉及到共原点坐标系和平移坐标系的转换,下面给出两种情况下的matlab代码,以供参考。

1.共原点坐标系下的转换
示例:两个共原点坐标系如下所示:
在这里插入图片描述
假设刚体在坐标系1中的惯性张量为I_1,坐标系1到坐标系2的旋转矩阵为R,那么通过如下代码可以计算刚体在坐标系2中的惯性张量。

R = [-1 0 0;
      0 0 1;
      0 1 0];
I2 = R*IVec2so3(I_1)*R';

%% 注意:函数的输入惯性张量元素是从Solidworks中提取得到的,所以在非对称惯性积上添加了负号
function I = IVec2so3(v)
    I = [ v(1) -v(2) -v(3);
          -v(2) v(4) -v(5);
          -v(3) -v(5) v(6);];
end

2.两个平移关系的坐标系下的转换:
在这里插入图片描述
假设在solidworks中测量得 刚体质量为m,在坐标系1中的惯性张量为I_1,刚体在坐标系1中的质心位置为[rx,ry,rz],并且关于质心坐标系(与坐标系1对齐)的惯性张量为I_c。坐标系2相对于坐标系1的位置为[0,0,a],那么通过如下代码可以计算刚体在坐标系2中的惯性张量。

% 主要公式为 Huygens-Steiner theorem
% I1 = Ic + m(P'*P*I-P*P')
% I1 = Ic + m*S(P)'*S(P)
% S = [ 0 -x3 x2;
%      x3  0 -x1;
%      -x2 x1 0]

% I2 = R*I1*R'   
% I1*R=I2
P_1 = [rx,ry,rz]';
% inertial tensor w.r.t CoM
Ic1 = IVec2so3(I_1) - m*(P_1'*P_1*eye(3) - P_1*P_1');
% update the new position of CoM
P1 = P_1 - [0,0,a]';
% the tensor we need is 
I1 = Ic1 + m*(P1'*P1*eye(3) - P1*P1');
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值