一、曲线的参数方程
1.1 参数方程的概念
一般地,在平面直角坐标系中,如果曲线上任意一点的坐标
x
,
y
x,y
x,y都是某个变数
t
t
t的函数
{
x
=
f
(
t
)
y
=
g
(
t
)
(1)
\left\{ \begin{aligned} &x=f(t)\\ &y=g(t) \end{aligned} \right.\tag{1}
{x=f(t)y=g(t)(1)并且对于每个
t
t
t的允许值,由方程组(1)所确定的点
M
(
x
,
y
)
M(x,y)
M(x,y)都在这条曲线上,那么方程组(1)就称为这条曲线的参数方程,联系变数
x
,
y
x,y
x,y的变数
t
t
t叫做参变数,简称参数。相对参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。这里的参数
t
t
t可以是一个有物理意义或几何意义的变数,也可以是没有明显实际意义的变数。
一个曲线多个参数方程,一个参数方程却只能对应一条曲线;此外,在建立参数方程时应该注明参数和参数的取值范围。
1.2 圆的参数方程
圆心在原点,半径为
r
r
r,
θ
\theta
θ为转过的角度。
{
x
=
r
cos
θ
y
=
r
sin
θ
θ
∈
[
0
,
2
π
)
(2)
\left\{ \begin{aligned} & x=r\cos\theta\\ & y=r\sin\theta \end{aligned}\quad \theta\in[0,2\pi) \right.\tag{2}
{x=rcosθy=rsinθθ∈[0,2π)(2)化成普通方程便于观察曲线的类型。另外,若圆心不在原点,若圆心为
(
a
,
b
)
(a,b)
(a,b),则对应参数方程应该为:
{
x
=
a
+
r
cos
θ
y
=
b
+
r
sin
θ
θ
∈
[
0
,
2
π
)
(3)
\left\{ \begin{aligned} & x=a+r\cos\theta\\ & y=b+r\sin\theta \end{aligned}\quad \theta\in[0,2\pi) \right.\tag{3}
{x=a+rcosθy=b+rsinθθ∈[0,2π)(3)
1.3 参数方程和普通方程的互化
一般地可以通过消去参数从而将参数方程转化成普通方程;若已知普通方程,可以通过令 x = f ( t ) x=f(t) x=f(t),再将 x x x带入普通方程来转化成参数方程。特别注意 x , y , θ x,y,\theta x,y,θ的取值范围。
二、圆锥曲线
2.1 椭圆的参数方程
长轴长为a,短轴长为b的椭圆的普通方程为:
x
2
a
2
+
y
2
b
2
=
1
(
a
>
b
>
0
)
(4)
\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\quad(a>b>0)\tag{4}
a2x2+b2y2=1(a>b>0)(4)
对应的参数方程为:
{
x
=
a
cos
ϕ
y
=
b
sin
ϕ
ϕ
∈
[
0
,
2
π
)
(5)
\left\{ \begin{aligned} &x=a\cos\phi\\ &y=b\sin\phi\\ \end{aligned} \right. \quad \phi\in[0,2\pi)\tag{5}
{x=acosϕy=bsinϕϕ∈[0,2π)(5)
2.2 双曲线的参数方程
若双曲线的普通方程为:
x
2
a
2
−
y
2
b
2
=
1
(
a
>
0
b
>
0
)
(5)
\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\quad(a>0\quad b>0)\tag{5}
a2x2−b2y2=1(a>0b>0)(5)
则对应的参数方程为:
{
x
=
a
sec
ϕ
y
=
b
sin
ϕ
ϕ
∈
[
0
,
2
π
)
(6)
\left\{ \begin{aligned} &x=a\sec\phi\\ &y=b\sin\phi\\ \end{aligned} \right. \quad \phi\in[0,2\pi)\tag{6}
{x=asecϕy=bsinϕϕ∈[0,2π)(6)
ϕ
\phi
ϕ为参数,满足条件:
- ϕ ∈ [ 0 , 2 π ) \phi\in[0,2\pi) ϕ∈[0,2π)
- ϕ ≠ π 2 ϕ ≠ 3 π 2 \phi\ne\frac{\pi}{2}\quad \phi\ne\frac{3\pi}{2} ϕ=2πϕ=23π
python中似乎没有
sec
\sec
sec函数,总之等于余弦的倒数就对了:
sec
ϕ
=
1
c
o
s
ϕ
\sec\phi=\frac{1}{cos\phi}
secϕ=cosϕ1
2.3 抛物线方程
设抛物线普通方程为
y
2
=
2
p
x
(7)
y^2=2px\tag{7}
y2=2px(7)
其中,
p
p
p表示焦点在顶点的距离。参数方程如下:
{
x
=
2
p
tan
2
α
y
=
2
p
tan
α
(8)
\left\{ \begin{aligned} &x=\frac{2p}{\tan^2\alpha}\\ &y=\frac{2p}{\tan\alpha} \end{aligned}\tag{8} \right.
⎩⎪⎨⎪⎧x=tan2α2py=tanα2p(8)
令
t
=
1
tan
α
t=\frac{1}{\tan\alpha}
t=tanα1,(8)变成:
{
x
=
2
p
t
2
y
=
2
p
t
(9)
\left\{ \begin{aligned} &x=2pt^2\\ &y=2pt \end{aligned}\tag{9} \right.
{x=2pt2y=2pt(9)
t ∈ ( − ∞ , 0 ) ∪ ( 0 , + ∞ ) t\in(-\infty,0)\cup(0,+\infty) t∈(−∞,0)∪(0,+∞), α \alpha α除顶点外任意一点与顶点连线与 O x Ox Ox夹角,显然当 t = 0 t=0 t=0时恰好是抛物线原点, t t t表示除原点外任意一点与原点连线斜率的倒数。
三、直线
过点
P
0
(
x
0
,
y
0
)
P_0(x_0,y_0)
P0(x0,y0)倾角为
α
\alpha
α的直线
l
l
l,其普通方程为:
y
−
y
0
=
tan
α
(
x
−
x
0
)
(10)
y-y_0=\tan\alpha(x-x_0)\tag{10}
y−y0=tanα(x−x0)(10)
对应的参数方程为:
{
x
=
x
0
+
t
cos
α
y
=
y
0
+
t
sin
α
(11)
\left\{ \begin{aligned} &x=x_0+t\cos\alpha\\ &y=y_0+t\sin\alpha \end{aligned} \right.\tag{11}
{x=x0+tcosαy=y0+tsinα(11)
t
t
t为参数,其绝对值等于动点
P
P
P到
P
0
P0
P0的距离,即:
∣
t
∣
=
∣
P
P
0
∣
(12)
|t|=|PP0|\tag{12}
∣t∣=∣PP0∣(12)
四、渐开线和摆线
4.1 渐开线参数方程,
渐伸线(involute)(或称渐开线(evolvent))和渐屈线(evolute)是曲线的微分几何上互为表里的概念。若曲线A是曲线B的渐伸线,曲线B是曲线A的渐屈线。
在曲线上选一定点
S
S
S。有一动点P由S出发沿曲线移动,选在
P
P
P的切线上的
Q
Q
Q,使得曲线长
S
P
SP
SP和直线段长
P
Q
PQ
PQ 相同。渐伸线就是
Q
Q
Q的轨迹。圆的渐开线方程为:
{
x
=
r
(
cos
ϕ
+
ϕ
sin
ϕ
)
y
=
r
(
sin
ϕ
−
ϕ
cos
ϕ
)
(13)
\left\{ \begin{aligned} &x=r(\cos\phi+\phi\sin\phi)\\ &y=r(\sin\phi-\phi\cos\phi) \end{aligned} \right.\tag{13}
{x=r(cosϕ+ϕsinϕ)y=r(sinϕ−ϕcosϕ)(13)
ϕ
\phi
ϕ是参数。
在机械工业中,广泛地使用齿轮传递动力。由于渐开线的齿形的齿轮磨损少、传动平稳,制造安装较为方便。因此大多数齿轮采用这种齿形,设计加工这种齿轮,需要借助圆的渐开线方程。
4.2 摆线
对应的参数方程为:
{
x
=
r
(
ϕ
−
sin
ϕ
)
y
=
r
(
1
−
cos
ϕ
)
(14)
\left\{ \begin{aligned} &x=r(\phi-\sin\phi)\\ &y=r(1-\cos\phi) \end{aligned} \right.\tag{14}
{x=r(ϕ−sinϕ)y=r(1−cosϕ)(14)
ϕ
\phi
ϕ是参数。