曲线的参数方程简介

一、曲线的参数方程

1.1 参数方程的概念

一般地,在平面直角坐标系中,如果曲线上任意一点的坐标 x , y x,y x,y都是某个变数 t t t的函数
{ x = f ( t ) y = g ( t ) (1) \left\{ \begin{aligned} &x=f(t)\\ &y=g(t) \end{aligned} \right.\tag{1} {x=f(t)y=g(t)(1)并且对于每个 t t t的允许值,由方程组(1)所确定的点 M ( x , y ) M(x,y) M(x,y)都在这条曲线上,那么方程组(1)就称为这条曲线的参数方程,联系变数 x , y x,y x,y的变数 t t t叫做参变数,简称参数。相对参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。这里的参数 t t t可以是一个有物理意义或几何意义的变数,也可以是没有明显实际意义的变数

一个曲线多个参数方程,一个参数方程却只能对应一条曲线;此外,在建立参数方程时应该注明参数和参数的取值范围。

1.2 圆的参数方程

圆心在原点,半径为 r r r, θ \theta θ为转过的角度。
{ x = r cos ⁡ θ y = r sin ⁡ θ θ ∈ [ 0 , 2 π ) (2) \left\{ \begin{aligned} & x=r\cos\theta\\ & y=r\sin\theta \end{aligned}\quad \theta\in[0,2\pi) \right.\tag{2} {x=rcosθy=rsinθθ[0,2π)(2)化成普通方程便于观察曲线的类型。另外,若圆心不在原点,若圆心为 ( a , b ) (a,b) (a,b),则对应参数方程应该为:
{ x = a + r cos ⁡ θ y = b + r sin ⁡ θ θ ∈ [ 0 , 2 π ) (3) \left\{ \begin{aligned} & x=a+r\cos\theta\\ & y=b+r\sin\theta \end{aligned}\quad \theta\in[0,2\pi) \right.\tag{3} {x=a+rcosθy=b+rsinθθ[0,2π)(3)

1.3 参数方程和普通方程的互化

一般地可以通过消去参数从而将参数方程转化成普通方程;若已知普通方程,可以通过令 x = f ( t ) x=f(t) x=f(t),再将 x x x带入普通方程来转化成参数方程。特别注意 x , y , θ x,y,\theta x,y,θ的取值范围。

二、圆锥曲线

2.1 椭圆的参数方程

长轴长为a,短轴长为b的椭圆的普通方程为:
x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) (4) \frac{x^2}{a^2}+\frac{y^2}{b^2}=1\quad(a>b>0)\tag{4} a2x2+b2y2=1a>b>0(4)
对应的参数方程为:
{ x = a cos ⁡ ϕ y = b sin ⁡ ϕ ϕ ∈ [ 0 , 2 π ) (5) \left\{ \begin{aligned} &x=a\cos\phi\\ &y=b\sin\phi\\ \end{aligned} \right. \quad \phi\in[0,2\pi)\tag{5} {x=acosϕy=bsinϕϕ[0,2π)(5)

2.2 双曲线的参数方程

若双曲线的普通方程为:
x 2 a 2 − y 2 b 2 = 1 ( a > 0 b > 0 ) (5) \frac{x^2}{a^2}-\frac{y^2}{b^2}=1\quad(a>0\quad b>0)\tag{5} a2x2b2y2=1a>0b>0(5)
则对应的参数方程为:
{ x = a sec ⁡ ϕ y = b sin ⁡ ϕ ϕ ∈ [ 0 , 2 π ) (6) \left\{ \begin{aligned} &x=a\sec\phi\\ &y=b\sin\phi\\ \end{aligned} \right. \quad \phi\in[0,2\pi)\tag{6} {x=asecϕy=bsinϕϕ[0,2π)(6) ϕ \phi ϕ为参数,满足条件:

  • ϕ ∈ [ 0 , 2 π ) \phi\in[0,2\pi) ϕ[0,2π)
  • ϕ ≠ π 2 ϕ ≠ 3 π 2 \phi\ne\frac{\pi}{2}\quad \phi\ne\frac{3\pi}{2} ϕ=2πϕ=23π

python中似乎没有 sec ⁡ \sec sec函数,总之等于余弦的倒数就对了:
sec ⁡ ϕ = 1 c o s ϕ \sec\phi=\frac{1}{cos\phi} secϕ=cosϕ1

2.3 抛物线方程

设抛物线普通方程为
y 2 = 2 p x (7) y^2=2px\tag{7} y2=2px(7)
其中, p p p表示焦点在顶点的距离。参数方程如下:
{ x = 2 p tan ⁡ 2 α y = 2 p tan ⁡ α (8) \left\{ \begin{aligned} &x=\frac{2p}{\tan^2\alpha}\\ &y=\frac{2p}{\tan\alpha} \end{aligned}\tag{8} \right. x=tan2α2py=tanα2p(8)
t = 1 tan ⁡ α t=\frac{1}{\tan\alpha} t=tanα1,(8)变成:
{ x = 2 p t 2 y = 2 p t (9) \left\{ \begin{aligned} &x=2pt^2\\ &y=2pt \end{aligned}\tag{9} \right. {x=2pt2y=2pt(9)

t ∈ ( − ∞ , 0 ) ∪ ( 0 , + ∞ ) t\in(-\infty,0)\cup(0,+\infty) t(,0)(0,+) α \alpha α除顶点外任意一点与顶点连线与 O x Ox Ox夹角,显然当 t = 0 t=0 t=0时恰好是抛物线原点, t t t表示除原点外任意一点与原点连线斜率的倒数。

三、直线

过点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)倾角为 α \alpha α的直线 l l l,其普通方程为:
y − y 0 = tan ⁡ α ( x − x 0 ) (10) y-y_0=\tan\alpha(x-x_0)\tag{10} yy0=tanα(xx0)(10)
对应的参数方程为:
{ x = x 0 + t cos ⁡ α y = y 0 + t sin ⁡ α (11) \left\{ \begin{aligned} &x=x_0+t\cos\alpha\\ &y=y_0+t\sin\alpha \end{aligned} \right.\tag{11} {x=x0+tcosαy=y0+tsinα(11)
t t t为参数,其绝对值等于动点 P P P P 0 P0 P0的距离,即:
∣ t ∣ = ∣ P P 0 ∣ (12) |t|=|PP0|\tag{12} t=PP0(12)

四、渐开线和摆线

4.1 渐开线参数方程,

渐伸线(involute)(或称渐开线(evolvent))和渐屈线(evolute)是曲线的微分几何上互为表里的概念。若曲线A是曲线B的渐伸线,曲线B是曲线A的渐屈线。
在这里插入图片描述

在曲线上选一定点 S S S。有一动点P由S出发沿曲线移动,选在 P P P的切线上的 Q Q Q,使得曲线长 S P SP SP和直线段长 P Q PQ PQ 相同。渐伸线就是 Q Q Q的轨迹。圆的渐开线方程为:
{ x = r ( cos ⁡ ϕ + ϕ sin ⁡ ϕ ) y = r ( sin ⁡ ϕ − ϕ cos ⁡ ϕ ) (13) \left\{ \begin{aligned} &x=r(\cos\phi+\phi\sin\phi)\\ &y=r(\sin\phi-\phi\cos\phi) \end{aligned} \right.\tag{13} {x=r(cosϕ+ϕsinϕ)y=r(sinϕϕcosϕ)(13)
ϕ \phi ϕ是参数。

在机械工业中,广泛地使用齿轮传递动力。由于渐开线的齿形的齿轮磨损少、传动平稳,制造安装较为方便。因此大多数齿轮采用这种齿形,设计加工这种齿轮,需要借助圆的渐开线方程。

4.2 摆线

在这里插入图片描述
对应的参数方程为:
{ x = r ( ϕ − sin ⁡ ϕ ) y = r ( 1 − cos ⁡ ϕ ) (14) \left\{ \begin{aligned} &x=r(\phi-\sin\phi)\\ &y=r(1-\cos\phi) \end{aligned} \right.\tag{14} {x=r(ϕsinϕ)y=r(1cosϕ)(14)
ϕ \phi ϕ是参数。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值