【LLM系列9】GRPO训练

GRPO(Group Relative Policy Optimization)训练详解


一、基本定义

GRPO(Group Relative Policy Optimization)是由DeepSeek团队提出的一种面向大规模语言模型(LLM)强化学习优化的算法,旨在解决传统PPO(Proximal Policy Optimization)算法中依赖价值网络(Critic Model)导致的计算开销大、策略更新不稳定等问题。其核心思想是通过组内相对奖励比较替代传统优势函数估计,从而简化训练流程并提升效率。

核心特点

  1. 无需价值网络:通过同一状态下多个动作的组内奖励比较,直接计算相对优势,避免维护与策略模型规模相当的价值网络。
  2. 稳定性提升:引入KL散度约束,防止策略更新偏离参考模型过远。
  3. 计算高效:内存占用减少50%,训练速度提升30%。

二、技术细节
1. 算法流程

GRPO的训练流程分为以下关键步骤:

  1. 组采样(Group Sampling):对每个输入状态(如问题提示),从当前策略模型中采样一组动作(如生成多个候选答案)。
  2. 奖励评估(Reward Evaluation):通过奖励模型(RM)对每个动作打分,例如基于答案正确性或格式规范性。
  3. 相对优势计算(Relative Advantage Estimation)
    • 对组内奖励进行归一化处理:
      r ~ i = r i − mean ( r ) std ( r ) \tilde{r}_i = \frac{r_i - \text{mean}(\mathbf{r})}{\text{std}(\mathbf{r})} r~i=std(r)rimean(r)
      其中, r \mathbf{r} r为组内所有动作的奖励值。
  4. 策略更新(Policy Update)
    • 目标函数结合策略梯度、裁剪机制和KL散度惩罚项:
      L = E [ min ⁡ ( π θ ( a ∣ s ) π θ old ( a ∣ s ) A ^ , clip ( π θ ( a ∣ s ) π θ old ( a ∣ s ) , 1 − ϵ , 1 + ϵ ) A ^ ) ] − β ⋅ KL ( π θ ∣ ∣ π ref ) \mathcal{L} = \mathbb{E} \left[ \min\left( \frac{\pi_\theta(a|s)}{\pi_{\theta_{\text{old}}}(a|s)} \hat{A}, \text{clip}\left( \frac{\pi_\theta(a|s)}{\pi_{\theta_{\text{old}}}(a|s)}, 1-\epsilon, 1+\epsilon \right) \hat{A} \right) \right] - \beta \cdot \text{KL}(\pi_\theta || \pi_{\text{ref}}) L=E[min(πθold(as)πθ(as)A^,clip(πθold(as)πθ(as),1ϵ,1+ϵ)A^)]βKL(πθ∣∣πref)
      • ϵ \epsilon ϵ控制更新幅度, β \beta β调节KL散度权重。
2. 与PPO的关键差异
维度PPOGRPO
价值网络依赖Critic模型估计优势函数完全摒弃Critic模型
优势估计基于广义优势估计(GAE)基于组内奖励归一化
更新约束使用概率比裁剪(Clip)引入KL散度惩罚项
适用场景通用任务(如控制系统)推理密集型任务(如数学解题)

三、代码示例(伪代码)
# GRPO核心训练循环(简化版)
for epoch in epochs:
    # 1. 采样组动作
    prompts = sample_prompts(batch_size)
    responses = [policy.generate(prompt, num_samples=G) for prompt in prompts]
    
    # 2. 计算奖励
    rewards = reward_model.evaluate(responses)
    
    # 3. 计算相对优势
    normalized_rewards = (rewards - rewards.mean()) / (rewards.std() + 1e-8)
    
    # 4. 策略更新
    optimizer.zero_grad()
    loss = compute_grpo_loss(
        policy, 
        old_policy, 
        responses, 
        normalized_rewards, 
        clip_epsilon=0.2, 
        kl_coef=0.1
    )
    loss.backward()
    optimizer.step()

四、重点文献
  1. 《DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models》
    • 首次提出GRPO算法,详细阐述其在数学推理任务中的应用及实验效果。
  2. 《DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning》
    • 展示GRPO在复杂推理任务(如代码生成)中的扩展性,结合迭代训练与奖励模型优化。
  3. 《Proximal Policy Optimization Algorithms》
    • PPO算法的原始论文,为GRPO的设计提供理论基础。

五、重点技术
  1. 组内相对优势估计
    • 通过多候选答案的对比,减少对单个奖励绝对值的依赖,降低方差。
  2. KL散度约束
    • 防止策略更新偏离初始监督微调(SFT)模型,缓解灾难性遗忘。
  3. 结果与过程监督结合
    • 结果监督:仅在输出序列末尾提供奖励(如答案正确性)。
    • 过程监督:在关键推理步骤(如中间计算)提供奖励信号,提升复杂任务表现。
  4. 自适应超参数调整
    • 动态调整KL散度系数 β \beta β,平衡策略更新与稳定性。

应用案例
  • DeepSeek-R1:在数学推理任务(AIME竞赛)中,通过GRPO将准确率提升至71%。
  • DeepSeekMath:在代码生成任务中,生成代码可运行性达85%。

总结

GRPO通过组内对比和KL约束机制,显著提升了大规模语言模型强化学习的效率与稳定性,尤其在数学推理、代码生成等复杂任务中表现突出。其核心创新在于简化优势估计流程并增强策略更新的可控性,为未来LLM训练提供了重要技术参考。

### LLaVA-NeXT 训练方法概述 LLaVA-NeXT 的训练过程涉及多个阶段,从数据准备到最终部署。为了确保模型的有效性和性能,在整个过程中需遵循一系列严谨的方法论。 #### 数据准备 在开始训练之前,准备好高质量的数据集至关重要。这通常包括收集、清洗和标注图像及其对应的文本描述。对于视觉语言模型而言,这些数据构成了学习的基础[^1]。 #### 模型架构设计 基于Transformer结构构建的多模态预训练框架被广泛应用于此类任务中。该框架能够处理来自不同源的信息流——即视觉特征提取自图片而语义理解则依赖于自然语言处理技术。具体来说,通过引入跨注意力机制来增强两种表征之间的交互作用力,从而实现更深层次的理解能力提升。 #### 预训练与微调 采用大规模无监督/弱监督方式预先训练基础版本之后再针对特定应用场景做进一步调整优化(Fine-tuning)。此策略不仅有助于缓解过拟合现象的发生几率同时也提高了泛化能力和迁移效率。值得注意的是,在某些情况下可能还需要额外加入领域适应性组件以更好地适配目标环境下的需求特点。 #### 性能评估 利用诸如 ImageNet-D 这样的基准测试集合可以有效地衡量经过改进后的算法表现如何变化;尽管有时候可能会观察到由于分布差异所带来的负面影响,但这恰恰反映了真实世界复杂性的挑战所在,并促使研究者们不断探索新的解决方案路径[^2]。 ```python # Python伪代码示例:加载并初始化LLaVA-NeXT模型用于后续操作 from llava_next import LLAVA_NeXT model = LLAVA_NeXT(pretrained=True) # 对新数据进行预测前先完成必要的准备工作... predictions = model.predict(new_data) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值