双边滤波(Bilateral Filter)原理解析及代码实现

一、双边滤波和高斯滤波

**双边滤波(Bilateral Filter)原理解析及代码实现**_molihong28的博客-CSDN博客

高斯滤波

空间距离相关的高斯函数

 公式中(xi,yi)为当前点位置,(xc,yc)为中心点的位置,sigma为空间域标准差。

双边滤波:

灰度距离相关的高斯函数相乘,(美颜相机用的就是这个算法)

 二、高斯滤波的的局限

        高斯滤波是一种空间的距离加权,对中心像素的近的位置权比较大,但是远的距离是小的,但是有一种情况,当远的这个距离的像素代的元素是只要的呢,那么这个就是不能体现图像的特征了,所以在高斯滤波的基础上进行下一步操作,加上灰度值的变化。

 上述图像是高斯滤波的。

C++: void bilateralFilter(
InputArray src, // 输入图像,可以是Mat类型,图像必须是8位或浮点型单通道、三通道的图像。
OutputArray dst, // 输出图像,和原图像有相同的尺寸和类型。
int d,//表示在过滤过程中每个像素邻域的直径范围。如果这个值是非正数,则函数会从第五个参数
double sigmaColor, //颜色空间过滤器的sigma值,这个参数的值越大,表明该像素邻域内有月宽广的颜色会被混合到一起,产生较大的半相等颜色区域。
double sigmaSpace, //坐标空间中滤波器的sigma值,如果该值较大,则意味着颜色相近的较远的像素将相互影响,从而使更大的区域中足够相似的颜色获取相同的颜色。当d>0时,d指定了邻域大小且与sigmaSpace五官,否则d正比于sigmaSpace.
 int borderType=BORDER_DEFAULT // 用于推断图像外部像素的某种边界模式,有默认值BORDER_DEFAULT
)

双边滤波器可以很好的保存图像边缘细节而滤除掉低频分量的噪音但是双边滤波器的效率不是太高,花费的时间相较于其他滤波器而言也比较长
对于简单的滤波而言,可以将两个sigma值设置成相同的值,如果值<10,则对滤波器影响很小,如果值>150则会对滤波器产生较大的影响,会使图片看起来像卡通。

#include<opencv2/opencv.hpp>
#include<iostream>
#include<math.h>
//#include<vector>

using namespace std;
using namespace cv;

//定义全局变量
const int g_ndMaxValue = 100;
const int g_nsigmaColorMaxValue = 200;
const int g_nsigmaSpaceMaxValue = 200;
int g_ndValue;
int g_nsigmaColorValue;
int g_nsigmaSpaceValue;

Mat g_srcImage;
Mat g_dstImage;

//定义回调函数
void on_bilateralFilterTrackbar(int, void*);

int main(int argc, char**argv)
{
	g_srcImage = imread("D:/picture/opencv/images/Lenna.png");

	//判断图像是否加载成功
	if (g_srcImage.empty())
	{
		cout << "could not load image..." << endl;
		return -1;
	}
	namedWindow("src", WINDOW_AUTOSIZE);
	imshow("src", g_srcImage);

	//定义输出图像窗口属性和轨迹条属性
	namedWindow("bilateralFilter", WINDOW_AUTOSIZE);
	g_ndValue = 10;
	g_nsigmaColorValue = 10;
	g_nsigmaSpaceValue = 10;

	char dName[20];
	sprintf(dName, "邻域直径 %d", g_ndMaxValue);

	char sigmaColorName[20];
	sprintf(sigmaColorName, "sigmaColor %d", g_nsigmaColorMaxValue);

	char sigmaSpaceName[20];
	sprintf(sigmaSpaceName, "sigmaSpace %d", g_nsigmaSpaceMaxValue);

	//创建轨迹条
	createTrackbar(dName, "bilateralFilter", &g_ndValue, g_ndMaxValue, on_bilateralFilterTrackbar);
	on_bilateralFilterTrackbar(g_ndValue, 0);

	createTrackbar(sigmaColorName, "bilateralFilter", &g_nsigmaColorValue,
		g_nsigmaColorMaxValue, on_bilateralFilterTrackbar);
	on_bilateralFilterTrackbar(g_nsigmaColorValue, 0);

	createTrackbar(sigmaSpaceName, "bilateralFilter", &g_nsigmaSpaceValue,
		g_nsigmaSpaceMaxValue, on_bilateralFilterTrackbar);
	on_bilateralFilterTrackbar(g_nsigmaSpaceValue, 0);

	waitKey(0);
	//system("pause");
	//getchar();
	//Sleep(10000);
	return 0;
}

void on_bilateralFilterTrackbar(int, void*)
{
	bilateralFilter(g_srcImage, g_dstImage, g_ndValue, g_nsigmaColorValue, g_nsigmaSpaceValue);
	imshow("bilateralFilter", g_dstImage);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值