一、双边滤波和高斯滤波
**双边滤波(Bilateral Filter)原理解析及代码实现**_molihong28的博客-CSDN博客
高斯滤波:
空间距离相关的高斯函数
公式中(xi,yi)为当前点位置,(xc,yc)为中心点的位置,sigma为空间域标准差。
双边滤波:
灰度距离相关的高斯函数相乘,(美颜相机用的就是这个算法)
二、高斯滤波的的局限
高斯滤波是一种空间的距离加权,对中心像素的近的位置权比较大,但是远的距离是小的,但是有一种情况,当远的这个距离的像素代的元素是只要的呢,那么这个就是不能体现图像的特征了,所以在高斯滤波的基础上进行下一步操作,加上灰度值的变化。
上述图像是高斯滤波的。
C++: void bilateralFilter(
InputArray src, // 输入图像,可以是Mat类型,图像必须是8位或浮点型单通道、三通道的图像。
OutputArray dst, // 输出图像,和原图像有相同的尺寸和类型。
int d,//表示在过滤过程中每个像素邻域的直径范围。如果这个值是非正数,则函数会从第五个参数
double sigmaColor, //颜色空间过滤器的sigma值,这个参数的值越大,表明该像素邻域内有月宽广的颜色会被混合到一起,产生较大的半相等颜色区域。
double sigmaSpace, //坐标空间中滤波器的sigma值,如果该值较大,则意味着颜色相近的较远的像素将相互影响,从而使更大的区域中足够相似的颜色获取相同的颜色。当d>0时,d指定了邻域大小且与sigmaSpace五官,否则d正比于sigmaSpace.
int borderType=BORDER_DEFAULT // 用于推断图像外部像素的某种边界模式,有默认值BORDER_DEFAULT
)
双边滤波器可以很好的保存图像边缘细节而滤除掉低频分量的噪音,但是双边滤波器的效率不是太高,花费的时间相较于其他滤波器而言也比较长。
对于简单的滤波而言,可以将两个sigma值设置成相同的值,如果值<10,则对滤波器影响很小,如果值>150则会对滤波器产生较大的影响,会使图片看起来像卡通。
#include<opencv2/opencv.hpp>
#include<iostream>
#include<math.h>
//#include<vector>
using namespace std;
using namespace cv;
//定义全局变量
const int g_ndMaxValue = 100;
const int g_nsigmaColorMaxValue = 200;
const int g_nsigmaSpaceMaxValue = 200;
int g_ndValue;
int g_nsigmaColorValue;
int g_nsigmaSpaceValue;
Mat g_srcImage;
Mat g_dstImage;
//定义回调函数
void on_bilateralFilterTrackbar(int, void*);
int main(int argc, char**argv)
{
g_srcImage = imread("D:/picture/opencv/images/Lenna.png");
//判断图像是否加载成功
if (g_srcImage.empty())
{
cout << "could not load image..." << endl;
return -1;
}
namedWindow("src", WINDOW_AUTOSIZE);
imshow("src", g_srcImage);
//定义输出图像窗口属性和轨迹条属性
namedWindow("bilateralFilter", WINDOW_AUTOSIZE);
g_ndValue = 10;
g_nsigmaColorValue = 10;
g_nsigmaSpaceValue = 10;
char dName[20];
sprintf(dName, "邻域直径 %d", g_ndMaxValue);
char sigmaColorName[20];
sprintf(sigmaColorName, "sigmaColor %d", g_nsigmaColorMaxValue);
char sigmaSpaceName[20];
sprintf(sigmaSpaceName, "sigmaSpace %d", g_nsigmaSpaceMaxValue);
//创建轨迹条
createTrackbar(dName, "bilateralFilter", &g_ndValue, g_ndMaxValue, on_bilateralFilterTrackbar);
on_bilateralFilterTrackbar(g_ndValue, 0);
createTrackbar(sigmaColorName, "bilateralFilter", &g_nsigmaColorValue,
g_nsigmaColorMaxValue, on_bilateralFilterTrackbar);
on_bilateralFilterTrackbar(g_nsigmaColorValue, 0);
createTrackbar(sigmaSpaceName, "bilateralFilter", &g_nsigmaSpaceValue,
g_nsigmaSpaceMaxValue, on_bilateralFilterTrackbar);
on_bilateralFilterTrackbar(g_nsigmaSpaceValue, 0);
waitKey(0);
//system("pause");
//getchar();
//Sleep(10000);
return 0;
}
void on_bilateralFilterTrackbar(int, void*)
{
bilateralFilter(g_srcImage, g_dstImage, g_ndValue, g_nsigmaColorValue, g_nsigmaSpaceValue);
imshow("bilateralFilter", g_dstImage);
}