如何更好的理解连续小波变换系数

连续小波变换CWT是一种冗余变换,CWT系数取决于所用的小波,所以理解起来稍微有些困难。为更好地理解CWT系数,本文从简单信号和简单小波开始分析。小波擅长检测信号的不连续性或奇异点,信号的突变点处具有较大的绝对值系数。首先设置一个移位脉冲信号,脉冲发生在第500点的位置。

x = zeros(1000,1);
x(500) = 1;

选择了一个简单信号,自然要选择一个简单小波,那自然是haar小波了

在1-128的尺度范围上使用Haar小波计算CWT

CWTcoeffs = cwt(x,1:128,'haar');

CWTcoeffs是一个大小为128×1000的矩阵,矩阵的每一行都包含一个尺度的 CWT系数。由于CWT的尺度为1:128,因此共128 行,矩阵的列维度与输入信号的长度相同。

看一下CWT的时间-尺度谱

cwt(x,1:128,'haar','plot'); 
colormap jet; colorbar;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哥廷根数学学派

码字不易,且行且珍惜

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值