变频器故障数据由MATLAB Simulink生成。
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, classification_report
from sklearn.preprocessing import StandardScaler, LabelEncoder, MinMaxScaler
from sklearn.impute import SimpleImputer
from sklearn.model_selection import train_test_split, cross_validate, cross_val_score, GridSearchCV, KFold
from sklearn.metrics import accuracy_score, roc_curve, roc_auc_score, precision_score
from sklearn.pipeline import make_pipeline, Pipeline
from sklearn.compose import make_column_transformer
data = pd.read_excel("All Data.xlsx", header=0)
new_df = data.drop('Unnamed: 0', axis='columns')
new_df.head(10)
new_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 40040 entries, 0 to 40039
Data columns (total 10 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 Tn (Rated Torque) N*m 40040 non-null float64
1 k (constant of proportionality) 40040 non-null float64
2 time (sec) 40040 non-null float64
3 Ia (Amp) 40040 non-null float64
4 Ib (Amp) 40040 non-null float64
5 Ic (Amp) 40037 non-null float64
6 Vab (V) 40040 non-null float64
7 Torque (N*m) 40040 non-null float64
8 Speed (rad/s) 40040 non-null float64
9 Category 40040 non-null object
dtypes: float64(9), object(1)
memory usage: 3.1+ MB
new_df.describe()
new_df.isnull().sum()
Tn (Rated Torque) N*m 0
k (constant of proportionality) 0
time (sec) 0
Ia (Amp) 0
Ib (Amp) 0
Ic (Am