牛顿插值的有记忆性是很讨喜的,在此之前就要先介绍差商,可以理解为导数差分表示形式。
是我们要操作的函数,
,是插值节点的
个取值。
记
为零阶差商,
记
为一阶差商,是不是有一阶导的味道了。
记
为二阶差商,这不就是二阶导的味道吗。
记
为
阶差商,这不就是熟悉的味道吗。
差商有两个比较好用性质
1.对称性:可以任意交换节点的次序,例如
2.差商与导数的关系
差商和导数就好像是猫和老虎同属猫科动物一样,既然相差无几总归是有关系的吧。
我们从拉格朗日中值定理中可以知道,会有一个
中的某个
有
高阶下有介于
中的某个
有
二、牛顿插值多项式
差商说完才能进入正题,还是用一阶差商来看,由
移项得出
,进一步用二阶差商表示
,简单移项有
,再用三阶表示二阶
有
,最后写出
阶形式,
......,
迭代就能得到n次情形的牛顿插值,
牛顿法有记忆性就体现在,如果我们只有N个节点,那么就是
如果此时我们增加了一个节点,有N+1个节点,大可不必把(2)式抹去重写,可以大方的加上一项
,就能得到(1)。
每多写一项,误差肯定是越来越小,误差估计可以结合差商的性质2得到类似泰勒展开的尾项误差。
而牛顿插值就像是泰勒展开的数值形式。
要注意,牛顿插值和拉格朗日插值都是多项式插值,而多项式插值是有唯一性的,唯一性证明为
数值分析中插值多项式的构造主要利用了线性代数中的哪个知识点 ?www.zhihu.com那么其实到这里我们就知道拉格朗日插值与牛顿插值都是可以被构造,而事实上他们是同一个方程。