Discovery Studio™ (简称DS)是专业的生命科学分子模拟软件,DS目前的主要功能包括:蛋白质的表征(包括蛋白-蛋白相互作用)、同源建模、分子力学计算和分子动力学模拟、基于结构药物设计工具(包括配体-蛋白质相互作用、全新药物设计和分子对接)、基于小分子的药物设计工具(包括定量构效关系、药效团、数据库筛选、ADMET)和组合库的设计与分析等。

在前面的文章中,利刃君为大家带来了使用Discovery Studio 2016进行受体-配体复合物药效团模型的构建教程,模型构建完成后,对于模型是否可靠的评估至关重要。今天利刃君为大家带来受体-配体复合物药效团模型构建完成后的评估教程。
一、模型评估
我们以上期教程中构建的信号传导和转录激活因子3(STAT3)构建的药效团模型为例,对所构建的配体-受体复合物药效团模型是否具有区分活性分子和非活性分子的能力进行评估。
打开上期教程的Report页面,在Job栏中双击Receptor-Ligand Pharmacophore Generation即可。
①Decoy set 验证
在Discovery Studio软件的受体-配体复合物药效团模型的验证过程中,可通过已知化合物与非活性化合物建立decoy set,decoy set可验证该药效团模型对于活性化合物和非活性化合物的区分能力。
在Summary中,我们可以看到本次计算中一共产生了10个药效团模型,配体分子中共有45个化学特征。表格中为decoy set的验证结果,表示了10个药效团模型对活性化合物和非活性化合物的命中结果。

该表格中的Sensitivity(SE)代表敏感度,代表了药效团模型对活性分子的识别能力;Specificity(SP)代表特异性,代表了药效团模型对非活性分子的识别能力。SE与SP的得分越高,表示药效团模型对活性与非活性分子的区分能力越强。

另外,我们通过ROS曲线图来判断每个药效团模型对活性与非活性分子的区分能力。

在该曲线图中,横坐标代表假阳性率,纵坐标代表真阳性率,用曲线下面积值代表最后的统计结果,图中最上方描述的Quality 0.500 即为曲线下面积,该值应大于0.5,越大代表模型区分能力越强,后面的Fair/Fail代表该药效团模型的好坏,Fair代表模型很好,Fail表示模型较差。
本次教程中模型验证结果较差,可能是所选用训练集分子结构太单一,药效团模型需要进一步优化,实际操作过程中,要结合实际情况来选择训练集分子,以构建出更为合理的药效团模型。②Selectivity Score评估
除了对药效团模型进行区分能力评估,我们还需要对药效团模型的选择性进行评估。选择性的评估需要通过Selectivity Score打分来实现,该分值越高说明药效团模型的选择性越高。
在Summary的最后,我们可以看到一个Pharmacophore Summary的表格,该表格为运行任务所得到的10个药效团模型特征组成及Selectivity Score值。

在Feature Set一栏中表示了每个药效团模型中的化学特征,最后的Selectivity Score一栏为每个药效团选择性的打分情况,表格中展示了Selectivity Score最高的10个药效团模型。

以上就是利刃君为大家带来的利用Discovery Studio 2016软件进行受体-配体复合物药效团模型的评估教程啦~
更多Discovery Studio软件使用教程,进入“叮当学术”公众号首页,点击下方菜单栏”分子模拟“中的”DS教程“子菜单即可获取~