测度定义_2.3——测度

这篇博客深入探讨了测度的概念,从有限可加测度出发,介绍了测度的性质、极限问题以及测度的分类,如有限测度和半有限测度。文中通过实例阐述了测度的计算,并提到了完备测度的重要性,指出所有测度都能延拓为完备测度。
摘要由CSDN通过智能技术生成

db4c5eb17f780c6f7709dfaa65cd6229.png

个人实分析拙劣的笔记,仅供鄙薄.

参考书籍:Folland,《Real Analysis, Modern Techniques and Their Applications》(Second Edition)


这一节我们来介绍重要的测度,用于度量集合大小的一个指标.

测度:
是基本空间
上的
代数.定义集函数

若其满足
(1).空零性:
;

(2).可数可加性:对于互不相交的可数集列
,有
.

则称
上的测度.

事实上,由(2)我们很容易推出有限可加性,即对于有限个互不相交的集列

,有

反之却是不行的.事实上,如果用有限可加性代替可数可加性,则得到的集函数我们称之为有限可加测度.显然,有限可加测度是非常衰的,他没有测度那么帅.有限到无穷之间存在着一个天堑,应用也是非常狭隘的.

我们称二元组

为可测空间,
中的元素(集合)称为可测集;三元组
称为测度空间.

下面我们来看看测度有哪些美(显)妙(然)的性质吧:

命题:
是测度空间,则有以下性质成立:

(1)单调性:若
,则
.

(2)可减性:如果
,
,则

(3)次可列可加性:如果
,那么

既然是美(显)妙(然)的性质,我们就不给出证明了.

下面来讨论下测度的极限问题.

命题:
是测度空间.

(1).(下连续性)若
是个递增列,则有

(2).(上连续性)若
是个递降列,此外,至少有一个
使
,则有

Proof:
(1).如何把括弧里面的拖拽到括弧外面来是个问题,很自然想到可数可加性,但是

大爷们并非两两没有交情,因此需要先处理一下
们,令
(
);这样就得到了一列两两无交的集合,而且
,灰常完美.然后考虑
作用在
上利用可数可加性将集合并运算拖到括弧外面成为求和运算,后面就很显然了;

(2).首先注意到因为是极限过程,测度有限的

是哪一个不重要,不妨假设是
就好.我们当然希望利用(1)的结论,这时候自然要考虑如何将递减列转化为递增列,很显然,
是一个递增列,然后带进(1)的结论算一算就好.事实上,计算过程你也会体验到为何需要至少存在一个测度有限的集合.

我们还是给个例子来说明这一点吧.

:

是实直线上一切子集全体所成的
代数.对于
,令集函数
(若
中有无限个点,则为
)(实际上,此时
称为计数测度,我们后面也会提到).易知
上测度.令

则显然

是递降的,但是呢?

进一步看一些有趣的命题.

命题:
上的测度,则有如下的性质:

(1)若
,那么

(2)若
,且存在自然数
使得
,那么

(3)若
,
存在,且有自然数
使得
,则

(4)(
)如果
且存在自然数
,那么

Proof:
命题是非常有意思的,它联系了集合的上下极限与数列的上下极限.
(1)和(2)的证明:注意到集合上下极限的具体形式(交并形式),然后注意到

是关于
递减的,(相应有交的版本),从而利用测度的上、下连续性.

(3)是(1)和(2)的直接推论.
(4)的话,注意条件实际上给出了一个正项收敛级数,放缩时候利用级数收敛的Cauchy准则即可.
.

尽管从测度的定义我们可以推出一系列性质,但是似乎也就到此为止了.我们进一步对测度进行分类.

定义:
是测度空间.

(1)若
,则称
是有限测度;

(2)若存在一列
,有
,且
,则称
有限测度;

(3)对每一测度为无穷的集合
(
),若存在
使得
具有正有限测度,则称
是半有限测度.

显然,有限测度空间中每一个可测集测度都是有限的.有限测度一定是

有限测度.

事实上,

有限测度是我们重点研究对象,它已经足够好,而比之更弱的测度尽管也有一些有趣的性质,但总的来说不是本书主要阐述的东西.对于
有限测度而言,每一
,注意到

因而

在每一
上的限制也是
有限的.

我们可以证明

有限测度一定是半有限的:对于任一无穷测度集合
,它都可以被分解成可数个有限测度集的并(即上述内容).

关于半有限测度还有一些有趣的东西,我们放在番外篇部分.

下面来看一些具体的例子.

:

是任意集合,
的幂集.
为任意函数.则定义
上的集函数:


(1)

是测度;

(2)
半有限当且仅当
;

(3)
有限当且仅当
半有限且
可数.

Proof:
(1).显然;

(2).设

半有限,若存在
,
,则集合
不存在具有正有限测度的子集;反之,对任一测度为无穷的集合
,任取
,则
是其一个正有限测度的子集;

(3).若

不可数,则
的任意分解
,则一定存在某一
中包含不可数个函数值大于0的点
,则该
的测度为无穷,从而
不可能是
有限的;反之,

就说明了

有限的.

:
特别地,在以上例子中,如果取

,则称
为计数测度,自然计数测度都是半有限的,特别地,若
可数则计数测度还是
有限的. 若设某一
,有
,
.则此时称
测度,显然它是
有限的.

:

是一不可数集合,
为可数或余可数
代数,即

我们定义

上的测度.

Proof:
我们只陈述一个有趣的事实:

中不可能包含两个不相交的余可数集合
.因若不然,由二者的不交性可知

从而与

的不可数矛盾.

再来一个有限可加测度的例子.

:

是无穷集,
.定义
上集函数

是有限可加测度.

下面陈述关于零集的事情.

定义-零集:
为测度空间,若
,则称
为零集(零测度集).

当一个陈述对于零集以外的集合都成立,则称该陈述几乎处处成立.比如说Dirichlet函数在有理点处取0,无理点处取1,则可以说Dirichlet函数几乎处处为1.

我们当然知道对于零集而言,其子集如果依然属于

代数(测度的定义域),则该子集一定也是零集.问题在于,零集的子集是否都属于
代数呢?因此我们有如下定义:
定义-完备测度:
为测度空间,
为任意零集,若对任意
,皆有
,则称测度为完备测度.

完备测度可以避免许多恼人的技术问题,幸运的是,所有的测度都可以延拓为完备测度.

定理-测度的完备化:
为测度空间.令

复令

代数,且存在
的唯一延拓
,其在
上为完备测度.

Proof:
首要之急在于证明

代数,可数并封闭是简单的,对余运算封闭是需要点转弯的.任取
,则存在
使得
,我们不妨假设
,若不然,以
代替
,
代替
.则此时有

后面就显然了.

然后我们定义

这么定义是自然的.因为作为延拓,必须对于

,有

因而利用单调性和有限可加性,有

事实上,我们上述即证明了延拓的唯一性.剩下的工作只要证明

是一个测度且其完备,比较容易就从略了.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值