个人实分析拙劣的笔记,仅供鄙薄.
参考书籍:Folland,《Real Analysis, Modern Techniques and Their Applications》(Second Edition)
这一节我们来介绍重要的测度,用于度量集合大小的一个指标.
测度:
设是基本空间上的代数.定义集函数
若其满足
(1).空零性:;
(2).可数可加性:对于互不相交的可数集列,有.
则称为上的测度.
事实上,由(2)我们很容易推出有限可加性,即对于有限个互不相交的集列
反之却是不行的.事实上,如果用有限可加性代替可数可加性,则得到的集函数我们称之为有限可加测度.显然,有限可加测度是非常衰的,他没有测度那么帅.有限到无穷之间存在着一个天堑,应用也是非常狭隘的.
我们称二元组
下面我们来看看测度有哪些美(显)妙(然)的性质吧:
命题:
设是测度空间,则有以下性质成立:
(1)单调性:若且,则.
(2)可减性:如果且,,则
(3)次可列可加性:如果且,那么
既然是美(显)妙(然)的性质,我们就不给出证明了.
下面来讨论下测度的极限问题.
命题:
设是测度空间.
(1).(下连续性)若且是个递增列,则有
(2).(上连续性)若且是个递降列,此外,至少有一个使,则有
Proof:
(1).如何把括弧里面的拖拽到括弧外面来是个问题,很自然想到可数可加性,但是
(2).首先注意到因为是极限过程,测度有限的
我们还是给个例子来说明这一点吧.
例:
设
则显然
进一步看一些有趣的命题.
命题:
设是环上的测度,则有如下的性质:
(1)若,那么
(2)若,且存在自然数使得,那么
(3)若,存在,且有自然数使得,则
(4)()如果且存在自然数,那么
Proof:
命题是非常有意思的,它联系了集合的上下极限与数列的上下极限.
(1)和(2)的证明:注意到集合上下极限的具体形式(交并形式),然后注意到
(3)是(1)和(2)的直接推论.
(4)的话,注意条件实际上给出了一个正项收敛级数,放缩时候利用级数收敛的Cauchy准则即可.
尽管从测度的定义我们可以推出一系列性质,但是似乎也就到此为止了.我们进一步对测度进行分类.
定义:
设是测度空间.
(1)若,则称是有限测度;
(2)若存在一列,有,且,则称是有限测度;
(3)对每一测度为无穷的集合(),若存在使得且具有正有限测度,则称是半有限测度.
显然,有限测度空间中每一个可测集测度都是有限的.有限测度一定是
事实上,
因而
我们可以证明
关于半有限测度还有一些有趣的东西,我们放在番外篇部分.
下面来看一些具体的例子.
例:
设
则
(1)
(2)
(3)
Proof:
(1).显然;
(2).设
(3).若
就说明了
注:
特别地,在以上例子中,如果取
例:
设
我们定义
则
Proof:
我们只陈述一个有趣的事实:
从而与
再来一个有限可加测度的例子.
例:
设
则
下面陈述关于零集的事情.
定义-零集:
设为测度空间,若有,则称为零集(零测度集).
当一个陈述对于零集以外的集合都成立,则称该陈述几乎处处成立.比如说Dirichlet函数在有理点处取0,无理点处取1,则可以说Dirichlet函数几乎处处为1.
我们当然知道对于零集而言,其子集如果依然属于
定义-完备测度:
设为测度空间,为任意零集,若对任意,皆有,则称测度为完备测度.
完备测度可以避免许多恼人的技术问题,幸运的是,所有的测度都可以延拓为完备测度.
定理-测度的完备化:
设为测度空间.令
复令
则是代数,且存在的唯一延拓,其在上为完备测度.
Proof:
首要之急在于证明
后面就显然了.
然后我们定义
这么定义是自然的.因为作为延拓,必须对于
因而利用单调性和有限可加性,有
事实上,我们上述即证明了延拓的唯一性.剩下的工作只要证明