群同态基本定理证明_Chapter 18 群表示理论(试读)

本文深入探讨有限群的表示理论,介绍了群同态基本定理及其在量子力学中的应用。通过Schur引理,阐述了Abel群的不可约表示性质,并详细证明了群表示的正交归一性、完备性以及不可约表示的特征标正交归一性。此外,还讨论了Clebsch-Gordon级数在复合系统中的应用。
摘要由CSDN通过智能技术生成

Chapter 4 (定义 4.3.)给出了群表示的一般定义。在本章中,我们将介绍一些与其理论相关的基本概念和技术,特别是对于有限群。物理学中的群表示以及其数学本身的重要性不容小觑。

让我们首先通过总体上考虑群表示理论在量子力学中的相关性来激励我们的研究。回想一下,在量子理论中,物理系统的状态由Hilbert空间中的向量(实际上是一条直线,或着说相互之间共线从而相差一个乘积因子为复数的向量,但我们将在此忽略这些细节)和Hilbert空间上的幺正算符,如有限平移,有限旋转和时间演变是非常重要,因为它们是规范不变的。令

为Hilbert空间
上的
对称群(symmetry group)
的一个幺正算符[如
],其中
上的幺正变换群。
是对称群意味着它使得Hamiltonian
不变:对于任意
,有

或者

回忆到

是一个幺正的意味着
。作为
的对称性质的结果,任意
也是如下Schrodinger方程的一个解

如果

具有相同特征值
。实际上

练习 18.1 说明:对于任意
,当且仅当
时,在
下,对于一个可观测量
,Schrodinger方程(18.3)和
Heisenberg运动学方程[(9.16)]

是不变的。

一般来说,一个能量特征值可能是简并的。对于一个特定的

,如果
中的
个向量
的集合组成了特征空间
称为
重简并。上面的讨论说明:对于任意
,如果
,则也有
。我们也称
的群作用使得任意特征空间不变

假设

作用在
上,举个例子,
。使用Dirac符号由
的作用来得到它对波函数
(
的坐标表示)的作用是有趣的。我们稍微概括并考虑在装配Hilbert空间
(见 Chapter 15)上而不是
上的
的一个幺正表示
,其中,对于可归一化状态
,对于不可归一化状态
。后一条件满足幺正性,因为对于任意

假设

我们已经在(4.17)中运用了此结果。

练习 18.2 验证群作用

满足群同态要求

从我们前面的讨论中,我们得出结论:对于任意

,如果Hamilton量
对易,则
给出
的任意特征子空间上
的一个幺正表示。因此,如果我们找到了使得
不变的群
的不等价不可约表示,则我们将找到
的所有能量特征值的完全分类,而不用显式求解Schrodinger方程。(不久将定义不等价不可约表示的概念)。这种使用群表示理论的分类在原子,分子,凝聚态物质和粒子物理学中得到了重要的应用。

现在让我们定义群表示理论中的等价和不可约概念。

定义 18.1. 如果群

的两个表示
由一个相似变换[(1.42)]关联起来:对于任意
,有

则称这两个表示为等价群表示(equivalent group representation)。其中,

是从
的可逆线性变换。

定义 18.2. 相对于群表示

,对于任意
,如果
说明
,则子空间
被称为是
的一个不变子空间(invariant subspace)。如果不变子空间不包含任何除自身和
之外的任何不变子空间,即:如果它不包含任何非平凡的不变子空间,则称该不变子空间是特征的(proper)(或最小的(minimal))。

定义 18.3.

上群
的表示
被称为不可约的(irreducible),满足:如果
不包含关于
的一个非平凡不变子空间向量空间;否则,
被称为可约的(reducible)。在后一种的情况下,如果非平凡不变子空间的正交补关于
也是不变的,则
被称为是完全可约的(fully reducible)(或者可分解的(decomposable))。

表达为一个矩阵(依赖于

中基向量的一些选择),可约表示(相似变换的意义下)的算符
看起来像:

如果表示空间

维的,则
是一个
矩阵。如果非平凡不变子空间
维的,
,则分块
矩阵。为了看到(18.10)的形式,我们选择
的一组基
使得子集
的一组基。
是不变的事实说明了

因此

这些恰好是(18.10)等式右边右上方的元素。(回忆我们关于矩阵

的约定,
是行指标,
是列指标)。

一个完全可约表示矩阵看起来像,相似变换的意义下

在这种情况下,由

组成的空间
也是在
下不变的。因此

这说明了

这些正是(18.13)等式右边左下方分块中的元素。

练习 18.3 考虑

定义
上的单参数群
的表示。说明这个表示在
上不可约。然而,在复
上,即:
,考虑成一个向量空间,存在
的完全可约表示。令
的一组基。则它也是
的一组基。说明在
中的基
变化下
可以对角化成
,由下式给出

很明显是完全可约的。该表示在物理学中具有非常有用的应用,例如,描述光子的偏振态。
练习 18.4 说明如果群
的幺正表示是可约的,则它也是完全可约的。

定理 18.1. 内积空间上有限群的每个表示等价于一个幺正表示。

注:这一重要定理也推广到了紧致Lie群(见定理 22.3.)。

证明:

为一个有限群
的一个表示。我们将说明存在一个不可约算符
使得:对于任意
,有

是幺正的。由下式定义算符

:对于任意
,有

表示
中的内积。则

其中,

,并且在第三个等号位置,我们运用了事实:当
遍历整个群时,
对于特定的
也是如此。因此,
是幺正的[c.f. (10.15)]。

通过练习 18.4的结论和上面的定理,我们看到:有限群的所有可约表示都是完全可约的。

在本章的其余部分,我们将在有限群的不可约表示理论中发展一些基本和有用的事实。首先,我们介绍一个中心定理,Schur 引理,所有这些事实都是基于这个定理。一些重要的无限群[如

]的表示将在后面讨论(见Chapter 21和Chapter 22)。

定理 18.2. Schur引理(Schur's Lemma)

分别是群
在向量空间
上的两个不可约表示。令
是一个线性映射使得

(1)如果

不等价于
,则

(2)如果

(因此
),则
,其中
是一个标量,
是单位算符(在
中)。

证明: 考虑

。对于任意
,这是
的不变子群,因为,如果
,则

由于

根据假设是不可约的,
不包含非平凡的不变子空间。因此
要么是
全部,要么是
。在前一种情况,
(零算符),并且整个定理已经证明[对于表述(2)
]。假设
。则通过推论 17.1,
建立了
间的同构。因此,条件(18.21)可以被重写成

说明

是等价表示。这证明了(1)。

为了证明表述(2),我们假设

是一个复向量空间。则
有至少一个特征值[见(17.5)后面的讨论]。令
的一个特征值,并且
是对应
的特征空间。则,对于任意
,有

并且

因此

的不变子空间;并且因为根据假设
是不可约的,
。于是得到

推论 18.1. Abel群的不可约表示都是一维的。

证明:

是一个Abel群
的一个不可约表示。对于确定的
的Abel性质意味着

扮演上面Schur引理表述中
的角色。则引理中的表述(2)意味着

由于

的选择是任意的,
对于任意
是对角化的。由于
是不可约的,矩阵
必须是
,并且表示因此是一维的。

在为有限群的表示提出后面的结果之前,在此列出与它们相关的各种量并定义一些符号是极好的:

注意到通过定理 17.2.和方程(17.35),特征标

独立于表示或类中的特定表示。我们对表示指标运用希腊字母,对类指标运用拉丁字母。这些指标都不表示张量,为了区别将它们放在括号里。括号里的指标求和将被显式给出,同时Einstein求和标准将仅用于重复张量指标。

定理 18.3. 群表示的正交归一性(Orthonormality of Group Representations) 对于一个有限群

证明:

为一个任意
矩阵。然后定义
矩阵
如下

我们有:对于任意

,有

因此

通过Schur引理,无论是

,在这种情况下
,还是
,在这种情况下

现在让我们考虑

矩阵的集合,
。每个都是一个
矩阵,其中第
元素有下式给出

令(18.29)中的矩阵

中任意一个。相应地,我们有
,根据(18.29)给出

我们已经知道如果

必须消失。因此,我们已经在
的情况下证明了定理。

,即:

其中,

是一个标量(
)。因此(18.33)产生(对于
)

其中,所有指标遍历从

。取指标
(合并一对指标
),我们有

或者

将这一结果代入(18.35)便得到定理。

作为一个例子,考虑两元素循环群(cyclic group)

,其中
(因此
)。这个群是Abel的,所以根据引理 18.1.,所有不可约表示都是一维的。首先我们有平凡表示:
。其中
并且
,这很明显满足(18.28)。通过令
,正交归一性定理说明了所有其它表示(
)必须满足

对于任意一维表示,

。因此
。我们总结:除了平凡表示
,还仅有另一个:

下面重要定理补充了正交归一性定理(定理 18.3.)。它将被表述而不证明(见 W.-K Tung 1985)。

定理 18.4. 不可约表示的完备性(Completeness of Irreducible Representations)

上述定理可以立刻得到的结果是,取

这显式说明了有限群的所有不可约表示是有限维的。

下面定理考虑群元素在特定共轭类中的不可约表示的特征标

定理 18.5.

其中,

由第
共轭类中的元素组成并且
是单位算符。

证明:

则:对于任意

,有

因此,通过Schur引理

为了计算数

,我们对(18.42)两边取迹得到

将这一结果代入(18.44)中的

,并对
运用(18.42)得到该定理。

定理 18.6. 群特征标的正交归一性和完备性(Orthonormality and Completeness of Group Characters)

其中,在(18.46)中求和遍历共轭类并且在(18.47)中它遍历不等价不可约表示。(两个方程中的bar符号意味着取复共轭)。

证明: 合并正交归一性定理[(18.28)]指标对

,我们有

因为有限群中每个表示等价于一个幺正表示(定理 18.1.),并且因为矩阵的迹在相似变换下不变(定理 17.2.),上面的方程可以重写成

其中,

是幺正表示,并且我们已经运用了事实:对于幺正算符,
。更进一步,因为

只取决于表示和共轭类,并且

直接从(18.49)得到正交归一性条件(18.46)。

为了证明完备性条件,我们采用(18.39)等式左边并操作如下:

其中,在第二个等号我们已经运用了(18.41)。通过(18.39),上面方程的第一个等号的左边也等于

令(18.52)中最后一个等号的右边等于

并取复共轭,得到了完备性条件(18.47)。

作为定理 18.6.的推论,我们有下面重要事实。

推论 18.2. 任意有限群

的不等价不可约表示的数目等于
不同共轭类的数目。

证明: 我们令(18.46)中

并且(18.47)中
,我们有

对(18.54)中的

求和并且对(18.55)中
求和,便得到推论。

由于推论 18.2.,群

的特征标
可以排列为
矩阵中的项,其中
中不同的共轭类的数目。该矩阵通常称为
的特征标表。注意,对于Abel群,每个群元素本身都在一个共轭类中,并且在推论 18.1.中,所有不可约表示都是一维的。因此,对于
,有

定理 18.7. 在将给定表示D(G)

简化为其不可约组分时,不可约表示
出现的次数
由下式给出:

其中,

(第
共轭类)。

证明: 我们有:对于

因此,两边都乘以

并对
求和,我们有

其中,在第二个等号位置我们已经运用了(18.46)。

最终,关于群特征标,我们有

定理 18.8. 具有特征标

的群
的一个表示是不可约的,当且仅当

证明:
我们有

如果表示是不可约的,对于一些

和对于任意
必须是正确的。因此得到(18.58)。相反,假设(18.58)成立。则(18.59)意味着

这反过来说明对于一些

和对于任意
。表示因此是不可约的。

作为上面关于群特征标讨论的说明,我们将处理二面体群

的特征标表。这个有限群是由平面上旋转
的所有乘积和这些旋转与一个关于
轴的镜面反射的乘积组成。它的
个元素列举如下

其中,

逆时针绕
轴旋转
,同时
关于
轴的镜面反射。它分解为下面六个共轭类:

练习 18.5 验证上面给出的
确实是共轭类。

根据推论 18.2.,

则有六个不等价不可约表示,它们用
标记。从定理 18.4.[(18.40)],我们有

这个方程有唯一的解:

。因此
维度分别为
。特征标表的
项为
。这将写成一个矩阵,其中
是表示的指标(行指标),
是类的指标(列指标)。

为(一维)恒元表示由对于任意
给出。因此特征标表(矩阵)的第一行都是
。因为
(单位算符),
,其中
是一个
的单位矩阵。第一列因此是
。一维表示
的其余特征标相对容易计算出来因为
只是数字,并且如果
,则
。对于这些
,我们有

其中,

是群元素
(
并且
)的类指标。观察
成员的显式表达,并且运用
的乘法表,我们有,举个例子

我们也有

为了确定一维表示所有的

,我们只需要多一个关于
的线性方程。这可以通过在正交归一性关系[(18.46)]中取
得到:

或者,回忆

上面的取值将对于

唯一确定所有
练习 18.6 计算
一维表示的所有特征标
。(见Table 18.1)。

两个二维表示

之一可以很显然地由下面的旋转矩阵给出

并且镜面反射矩阵(关于

轴)

的所有其它群元素的
表示矩阵可以简单地通过矩阵乘法来确定。对合适的
矩阵取迹,我们发现:
。当
剩余的二维表示不明显时,它的特征标可以通过群特征标的正交归一性和完备性定理(定理 18.6.)确定。先后在(18.47)中令
,我们立刻得到
。最后三个特征标
可以从(18.46)确定,举个例子(
),(
)和(
)。因此

这进一步得到结果

我们最终将

的特征标表表示如下(Table 18.1)。在表中,类名称
中括号内的数字是该类中元素的数量

89167488992681ee18bcefb5c53f2431.png
练习 18.7 验证Table 18.1中的特征标表满足定理 18.6.。

给定一个完全可约表示

,我们现在想要找到
包含的
的所有不可约表示。目标是找到投影算符
使得对于任意
,有
,其中
是第
不等价不可约表示的表示空间。

回忆关于特定表示的Lie代数的包络代数的概念(在Chapter 7中介绍)。我们对群有一个类似的概念。在群

中,仅定义群乘法,所以如果
,则
或者
没有定义。然而,对于一个给定的表示
都被很好地定义了,因此对于任意
是一个线性算符。
中的所有元素满足一般分配律和结合律的求和和乘积被称为关于表示
群代数(group algebra),用
表示。考虑算符
定义为

我们有

在第二个等号位置我们令

,并在第五个等号位置我们运用了正交归一性定理[定理 18.3.中(18.28)]。因此,通过(18.61)有

让我们现在来定义

其中,

是第
表示的特征标。我们将说明这是我们寻找的投影算符。

首先,(18.63)说明

幂等的(idempotent)(任意投影算符都必须满足的一个性质):

我们也需要证明完备性:

其中,

是单位算符。

由于

总是完全可约的,存在一个不可约算符
(
上),使得:对于任意

其中,第

表示
出现了
次[(18.56)](
可以是零)。因此

其中

[回忆(18.42)]。从定理 18.5.有

其中

单位矩阵。因此,通过正交归一群特征标[定理 18.6.中(18.46)]有

从(18.64)得到

其中,倒数第二个等号位置的右边,左上方的分块包含一个

子矩阵并且右上方分块包含一个
子矩阵。因此
和完备性建立了。

投影算符

也满足下面的性质:

1)

2) 如果

是幺正的,
是hermitian。
练习 18.8 证明上面两条性质。

在下一章中,我们将看到在当前发展出的许多结果的应用。

我们将用总体上考虑关于不可约表示积的约化问题来总结本章。这个主题在复合系统的物理学中有重要的应用。

为群
的两个不可约表示。维度为
积表示(product representation)
由下式给出

这个表示一般是可约化的。一般约化写成所谓的Clebsch-Gordon级数(Clebsch-Gordon series)

其中,

是第
不可约表示出现在积表示中的次数[c.f. (18.56)]。方程(18.74)说明积表示的特征标和那些不可约表示由下式联系起来

因此根据(18.56)有

假设

分别是不可约表示空间
的标准正交基。我们运用Dirac符号将基向量写成
。积表示空间的基向量可以因此写成

我们有完备性条件[c.f. (12.12)]

Clebsch-Gordon级数(18.75)右边的标准正交基的状态可以用

表示,其中
标记从(可能)多次出现的第
不可约表示,并且
。从(18.79)得出

矩阵元素

称为
Clebsch-Gordon系数(Clebsch-Gordon coefficients)。它们很明显满足下面一对正交归一性和完备性条件:

方程(18.81)是

(对于确定的
)完备性和
的正交归一性的结果,同时(18.82)是
完备性和
(对于确定的
)的正交归一性的结果。

下面的张量关系是Clebsch-Gordon级数(18.75)在应用中也十分有用。我们有:对于任意

,有

练习 18.9 证明上面两个方程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值