卡尔曼滤波五个公式_SLAM后端优化中卡尔曼滤波的直观通俗解释

本文通过一个机器人小R的例子,直观解释了卡尔曼滤波的基本原理。小R通过传感器和里程计获取信息,利用卡尔曼滤波进行状态估计,达到滤波效果。文中介绍了预测模型和测量模型,以及如何通过卡尔曼增益进行加权融合,从而得到最优状态估计。在SLAM中,卡尔曼滤波被用于融合不同的传感器数据,提高定位准确性。
摘要由CSDN通过智能技术生成

点击上方“计算机视觉life”,选择“星标”

快速获得最新干货

本文由知乎 郑纯然 授权转载
原文链接:
https://zhuanlan.zhihu.com/p/146593826

先讨论滤波器的概念,滤波的意思是,让机器人在某个正确位置上对应的概率越高越好。也就是可以理解为:把错误位置上的概率滤低,把正确位置处的概率滤高。

假设一个机器人小R在如下场景中出现,他刚开始不知道自己在哪(小R还没看到他眼前的门),因此他在这个场景中任何位置的概率是相等的。如果此时纵坐标为机器人小R在对应位置处的概率,横坐标表示各个位置,应该是一条均匀分布的直线。

2ebf3d9d24a27ce5dd0be9f3ce28b0dc.png

突然,机器人看到了眼前这个门,这里假设机器人提前知道一共有三个门,因此小R现在知道自己可能在任意一个门前,即三个门分别对应着一个正态分布。此时的概率波形可以理解为先验概率

d76bbf4de98153aa6af96fa6f7e71893.png

小R继续向前走到第二个门前,他通过自己身上安装的里程计发现自己走了d个单位。

ff2c3e4fe50daed702bb17d006046ef8.png

根据之前的概率分布,小R可以预测到,自己的位置应该向右平移了d个单位。那么可以将之前的概率分布向右平移d个单位,得到此时通过传感器得到的概率分布。此时的概率波形可以理解为似然概率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值