矩阵迹的性质_线性代数中的基础概念(1):常见符号表示,向量范数与矩阵范数...

本文介绍了线性代数中的基础概念,包括矩阵和向量的常见符号表示,如转置和共轭转置,以及向量的数乘、内积。此外,详细阐述了向量范数和矩阵范数的定义、性质,如Frobenius范数和诱导范数,强调矩阵范数是对线性变换的度量。
摘要由CSDN通过智能技术生成
ACoder:线性代数中一些等价的结论​zhuanlan.zhihu.com
ACoder:线性代数中的基础概念(2)​zhuanlan.zhihu.com

本文的主要内容:

  • 常见的符号表示
  • 向量乘法与数乘
  • 向量范数与矩阵范数

常见的符号表示

: 实数集

: 复数集

: n维实数空间

: n维复数空间

: 所有
的实矩阵构成的集合

: 所有
的复矩阵构成的集合

: 列向量

: 向量
的第
个元素

:矩阵

:矩阵第
行的第
个元素

向量:

向量的转置:

(列向量转置成为了行向量)

向量的共轭转置:

互为共轭)

矩阵:

矩阵的转置:

性质:

矩阵的共轭转置:

性质:

矩阵的迹(trace):

性质:

表示一个元素全为0的向量或矩阵

表示一个元素全为1的向量或矩阵

单位向量:

只有一个位置为1,其余是0

单位矩阵(identity matrix):

对角矩阵(diagonal matrx):

上三角矩阵(upper triangle matrix)

下三角矩阵(lower triangle matrix)

向量乘法与数乘

,
  • 向量数乘:
  • 向量乘法(内积):

如果

, 则说
是正交的。

向量范数与矩阵范数

非零向量

的范数
是一个正数,向量范数
度量向量
的长度。向量范数也可以用来度量2个向量距离的远近,如
。由此可知范数应该是一个函数,需要将一个向量映射到实数空间
,即

同时我们要求向量范数满足以下3条性质:

  1. 并且

常见的向量范数:

(也被称为曼哈顿范数或出租车范数)

(欧式范数)

矩阵范数: 和向量范数的定义类似,能够将矩阵映射到一个实数,并满足4条基本性质的函数就是一种矩阵范数。矩阵范数不是对矩阵在空间中长度的一种度量!!!因为矩阵是线性空间中的一个线性变换,没法度量线性变换的长度。

矩阵范数需要满足的4条性质(假设

可以相加或相乘):
  1. 并且

假设

, 常见的矩阵范数:

Frobenius范数:

诱导范数(induced norm):

的诱导范数(绝对值之和最大的列):

的诱导范数:

的诱导范数(绝对值之和最大的行):

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值