物体抓取位姿估計算法綜述_物体抓取位姿估計算法綜述_【视觉】一种散乱堆放物体的位姿估计算法...

本文介绍了一种基于点对特征的散乱堆放物体位姿估计算法,针对工业环境中物体的遮挡和混叠问题,进行了法线方向一致性调整、抓取位姿筛选策略和旋转对称角度偏差调整的优化。实验表明,该算法在散乱堆放物体场景中的位姿估计效果理想,具有较高的抓取成功率。
摘要由CSDN通过智能技术生成

39a78d866ea51f7edaefaefc4e6bdee3.png

本文摘自于:徐冠宇,董洪伟,钱军浩,许振雷. 基于点对特征的散乱堆放物体的位姿估计算法[J]. 激光与光电子学进展, 2020, 57(18): 181508

引言

现有的三维物体识别和位姿估计方法无法很好地用于散乱堆放物体的场景,尤其是有严重遮挡和混叠的场景。

研究团队使用基于点对特征的点云匹配和位姿估计算法,针对工业环境中乱序物体的特点,进行了一系列改进,

如场景点云法线方向一致性调整、抓取位姿筛选策略调整、旋转对称引起的角度偏差调整

,以取得更理想的位姿估计结果。

在仿真环境和真实场景下进行了一系列实验,实验结果表明,所采用的算法在乱序物体场景中的位姿估计效果比较理想。

基于点对特征的位姿估计算法

基于点对特征的位姿估计算法分为离线建模和在线识别两个阶段,如图1所示。

bc32f2d959996e038e1080d2a012e54f.png

离线建模阶段:

使用待抓取物件的 CAD 模型,将其离散化为点云,或使用点云成像设备扫描待抓取物件获得点云, 估算点云的法线,然后从点云中提取点对特征,并将其保存在哈希表中,完成离线建模;

在线识别阶段:

使用点云成像设备扫描散乱堆放的待抓取物件 的场景,获得场景点云,使用与离线建模阶段同样的方法获得点对特征,然后进行点对特征对齐和位姿估计,在位姿参数空间使

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值