一、本文介绍
本文记录的是改进YOLOv11的损失函数,将其替换成Focaler-IoU
。现有研究通过利用边界框之间的几何关系来提高回归性能,但忽略了困难样本和简单样本分布对边界框回归的影响。不同检测任务中困难样本和简单样本的分布不同,对于简单样本占主导的检测任务,关注简单样本的边界框回归有助于提高检测性能;对于困难样本比例较高的检测任务,需要关注困难样本的边界框回归。Focaler-IoU
能够通过关注不同的回归样本,提高检测器在不同检测任务中的性能。
实现的Focaler-IoU
包括:Focaler-DIoU
、Focaler-GIoU
、Focaler-CIoU
专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进