群同态基本定理证明_有限群的线性表示 | 表示与群代数

78381605d1c380c1907f0bd824a32f48.png

作者介绍:英国牛津大学 Mathematical Institute 放假了。上学期学了有限群的线性表示。这是一门要考试的课,所以做个简短的期末复习。 计划中的目录
  • 表示与群代数
  • 半单代数的结构
  • 特征标理论
  • 诱导表示与限制表示
  • 应用:Burnside 73a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 定理
参考
  • Konstantin Ardakov, Lecture Notes on B2.1 Introduction to Representation Theory(2020-2021)
  • 丘维声,群表示论
有限群的表示论是群论和线性代数结合的产物。群是从“对称性”中抽象出来的代数结构。群表示论的核心课题,就是找到所有群在向量空间上的线性表示。 这门课的前置课程是线性代数,群论,环论和模论。在整个笔记中, 74a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 指代基域。 76a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 指代一个有限群。我们有时会考虑 74a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 是代数闭域,以及 79a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 的情况。在特征标理论中,我们只研究 7aa95bc8-5b41-eb11-8da9-e4434bdf6706.svg 的情况。 7ba95bc8-5b41-eb11-8da9-e4434bdf6706.svg 指代一个 74a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 上的有限维向量空间。令 80a95bc8-5b41-eb11-8da9-e4434bdf6706.svg7ba95bc8-5b41-eb11-8da9-e4434bdf6706.svg 上全体可逆线性变换构成的群。 若不加声明,所有向量空间均为 74a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 上的向量空间,当我们谈及维数时,均指 74a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 上的维数。例如当我们说“ 88a95bc8-5b41-eb11-8da9-e4434bdf6706.svg8aa95bc8-5b41-eb11-8da9-e4434bdf6706.svg7ba95bc8-5b41-eb11-8da9-e4434bdf6706.svg ”,实际上是指 8ca95bc8-5b41-eb11-8da9-e4434bdf6706.svg

定义 1.1 表示

76a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 是有限群, 7ba95bc8-5b41-eb11-8da9-e4434bdf6706.svg 是有限维向量空间。 76a95bc8-5b41-eb11-8da9-e4434bdf6706.svg7ba95bc8-5b41-eb11-8da9-e4434bdf6706.svg 上的>一个表示是指一个群同态 95a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 其中表示 98a95bc8-5b41-eb11-8da9-e4434bdf6706.svg次数7ba95bc8-5b41-eb11-8da9-e4434bdf6706.svg 的维数 9ba95bc8-5b41-eb11-8da9-e4434bdf6706.svg 。若 9fa95bc8-5b41-eb11-8da9-e4434bdf6706.svg ,则称 98a95bc8-5b41-eb11-8da9-e4434bdf6706.svg忠实的
我们接下来将证明,给定一个 7ba95bc8-5b41-eb11-8da9-e4434bdf6706.svg 上群 76a95bc8-5b41-eb11-8da9-e4434bdf6706.svg74a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 表示,等价于在 7ba95bc8-5b41-eb11-8da9-e4434bdf6706.svg 上定义一个 8aa95bc8-5b41-eb11-8da9-e4434bdf6706.svg 模结构,其中将要定义的 8aa95bc8-5b41-eb11-8da9-e4434bdf6706.svg 是群 76a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 在域 74a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 上的群代数。群代数可以视为 76a95bc8-5b41-eb11-8da9-e4434bdf6706.svg74a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 上的“线性扩充”。

定义 1.2 群代数

76a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 是有限群。考虑 74a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 上以 76a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 为基自由生成的向量空间: b2a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 其上可定义乘法结构: b4a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 可以验证,这个乘法与 74a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 上的标量乘法相容。于是 8aa95bc8-5b41-eb11-8da9-e4434bdf6706.svg 就成为 74a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 上的一个代数。
表示 b9a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 可以线性地扩充到 8aa95bc8-5b41-eb11-8da9-e4434bdf6706.svg 上。定义 bea95bc8-5b41-eb11-8da9-e4434bdf6706.svgc0a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 易验证 c2a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 是从 8aa95bc8-5b41-eb11-8da9-e4434bdf6706.svgc7a95bc8-5b41-eb11-8da9-e4434bdf6706.svg74a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 代数同态。于是 c2a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 定义了 7ba95bc8-5b41-eb11-8da9-e4434bdf6706.svg 上的一个左 8aa95bc8-5b41-eb11-8da9-e4434bdf6706.svg 模结构: d1a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 反过来,设 74a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 向量空间 7ba95bc8-5b41-eb11-8da9-e4434bdf6706.svg 是一个左 8aa95bc8-5b41-eb11-8da9-e4434bdf6706.svg 模。则 7ba95bc8-5b41-eb11-8da9-e4434bdf6706.svg 上有自然的群同态 95a95bc8-5b41-eb11-8da9-e4434bdf6706.svg ,由如下方式给出: d9a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 这是群 76a95bc8-5b41-eb11-8da9-e4434bdf6706.svg7ba95bc8-5b41-eb11-8da9-e4434bdf6706.svg 上的一个 74a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 表示。 这样,我们就把左 8aa95bc8-5b41-eb11-8da9-e4434bdf6706.svg 模和群 76a95bc8-5b41-eb11-8da9-e4434bdf6706.svg74a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 表示自然对应了起来。以后我们会不加声明地交换使用这两个概念。 接下来给出一些群表示的重要栗子。

Example 1.3 群表示的例子

76a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 是一个有限群。
  • 平凡表示: 群表示e7a95bc8-5b41-eb11-8da9-e4434bdf6706.svg满足对于任意e8a95bc8-5b41-eb11-8da9-e4434bdf6706.svgeaa95bc8-5b41-eb11-8da9-e4434bdf6706.svg,称为76a95bc8-5b41-eb11-8da9-e4434bdf6706.svg的平凡表示。
  • 正则表示: 群表示eca95bc8-5b41-eb11-8da9-e4434bdf6706.svg满足eea95bc8-5b41-eb11-8da9-e4434bdf6706.svg,称为76a95bc8-5b41-eb11-8da9-e4434bdf6706.svg的(左)正则表示。8aa95bc8-5b41-eb11-8da9-e4434bdf6706.svg自身是一阶左8aa95bc8-5b41-eb11-8da9-e4434bdf6706.svg自由模,称为左正则8aa95bc8-5b41-eb11-8da9-e4434bdf6706.svg模,它的子模就是8aa95bc8-5b41-eb11-8da9-e4434bdf6706.svg的左理想。
  • 矩阵表示: 群表示f8a95bc8-5b41-eb11-8da9-e4434bdf6706.svg称为76a95bc8-5b41-eb11-8da9-e4434bdf6706.svg的一个矩阵表示。
  • 置换表示: 设fba95bc8-5b41-eb11-8da9-e4434bdf6706.svg是一个有限集。考虑74a95bc8-5b41-eb11-8da9-e4434bdf6706.svg上以fba95bc8-5b41-eb11-8da9-e4434bdf6706.svg为基自由生成的向量空间:
01aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 一个群作用 04aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 可以线性地扩充成一个群表示 05aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg ,由如下方式给出: 06aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 98a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 称为 76a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 的一个置换表示。
群表示之间有同态映射:

定义 1.4 表示同态

95a95bc8-5b41-eb11-8da9-e4434bdf6706.svg0caa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 是群 76a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 的两个表示。若线性映射 11aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 使得对于任意 e8a95bc8-5b41-eb11-8da9-e4434bdf6706.svg ,有 16aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg ,则称 17aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 是表示 98a95bc8-5b41-eb11-8da9-e4434bdf6706.svg1aaa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 之间的同态。若 17aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 是双射,则称之为表示同构
用模论的语言,表示同态 11aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 给出了左 8aa95bc8-5b41-eb11-8da9-e4434bdf6706.svg7ba95bc8-5b41-eb11-8da9-e4434bdf6706.svg21aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 之间的一个模同态: 23aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 群表示有子表示和商表示:

定义 1.5 稳定子空间

24aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 是一个群表示,它定义了 7ba95bc8-5b41-eb11-8da9-e4434bdf6706.svg 上的一个左 8aa95bc8-5b41-eb11-8da9-e4434bdf6706.svg 模结构。设 2eaa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 是一个 7ba95bc8-5b41-eb11-8da9-e4434bdf6706.svg 的子空间。若对于任意 e8a95bc8-5b41-eb11-8da9-e4434bdf6706.svg37aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg ,有 38aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg ,那么 39aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 称为 7ba95bc8-5b41-eb11-8da9-e4434bdf6706.svg76a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 稳定子空间

定义 1.6 子表示,商表示

24aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 是一个群表示。 2eaa5bc8-5b41-eb11-8da9-e4434bdf6706.svg76a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 稳定子空间。
  • 39aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg提供的98a95bc8-5b41-eb11-8da9-e4434bdf6706.svg子表示,是指群同态45aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg,满足46aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg对所有e8a95bc8-5b41-eb11-8da9-e4434bdf6706.svg4aaa5bc8-5b41-eb11-8da9-e4434bdf6706.svg成立。换而言之,子空间39aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg7ba95bc8-5b41-eb11-8da9-e4434bdf6706.svg的左8aa95bc8-5b41-eb11-8da9-e4434bdf6706.svg子模。
  • 39aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg提供的98a95bc8-5b41-eb11-8da9-e4434bdf6706.svg商表示,是指群同态50aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg,满足52aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg对所有e8a95bc8-5b41-eb11-8da9-e4434bdf6706.svg54aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg成立。换而言之,商空间56aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg7ba95bc8-5b41-eb11-8da9-e4434bdf6706.svg的左8aa95bc8-5b41-eb11-8da9-e4434bdf6706.svg商模。

定义 1.7 既约表示

若表示 24aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 没有非平凡真 76a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 稳定子空间,则称之为既约表示。换而言之,作为左 8aa95bc8-5b41-eb11-8da9-e4434bdf6706.svg 模, 7ba95bc8-5b41-eb11-8da9-e4434bdf6706.svg 是单模。
表示论的核心就是在至多同构的情况下找到群 76a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 的所有既约表示。 接下来我们给出表示论的第一个有趣的结论:

定理 1.8 Maschke定理

76a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 是有限群,且 79a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 。设 7ba95bc8-5b41-eb11-8da9-e4434bdf6706.svg8aa95bc8-5b41-eb11-8da9-e4434bdf6706.svg 模, 2eaa5bc8-5b41-eb11-8da9-e4434bdf6706.svg7ba95bc8-5b41-eb11-8da9-e4434bdf6706.svg8aa95bc8-5b41-eb11-8da9-e4434bdf6706.svg 子模。则存在 7ba95bc8-5b41-eb11-8da9-e4434bdf6706.svg8aa95bc8-5b41-eb11-8da9-e4434bdf6706.svg 子模 21aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 使得 70aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg
证明:
首先设 72aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg7ba95bc8-5b41-eb11-8da9-e4434bdf6706.svg 中关于 39aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 的一个线性补空间,即 76aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 。设 78aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 是这个直和分解到 39aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 上的投影。即对 4aaa5bc8-5b41-eb11-8da9-e4434bdf6706.svg7eaa5bc8-5b41-eb11-8da9-e4434bdf6706.svg7faa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 。由 81aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg ,可以定义线性变换 83aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 84aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 容易验证 17aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 是一个 8aa95bc8-5b41-eb11-8da9-e4434bdf6706.svg 模同态,且 17aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 也是一个从 7ba95bc8-5b41-eb11-8da9-e4434bdf6706.svg39aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 的投影。设 8eaa5bc8-5b41-eb11-8da9-e4434bdf6706.svg ,则由模的第一同构定理, 21aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg7ba95bc8-5b41-eb11-8da9-e4434bdf6706.svg8aa95bc8-5b41-eb11-8da9-e4434bdf6706.svg 子模。且由投影的性质有 99aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg

命题 1.9 半单模,完全可约表示

9caa5bc8-5b41-eb11-8da9-e4434bdf6706.svg74a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 代数, 7ba95bc8-5b41-eb11-8da9-e4434bdf6706.svg 是左 9caa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 模,且 cca453ce-5b41-eb11-8da9-e4434bdf6706.svg 。以下命题等价:
  • 存在7ba95bc8-5b41-eb11-8da9-e4434bdf6706.svg的一族单9caa5bc8-5b41-eb11-8da9-e4434bdf6706.svg子模d0a453ce-5b41-eb11-8da9-e4434bdf6706.svg,使得 d1a453ce-5b41-eb11-8da9-e4434bdf6706.svg
  • 7ba95bc8-5b41-eb11-8da9-e4434bdf6706.svg的任意9caa5bc8-5b41-eb11-8da9-e4434bdf6706.svg子模39aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg,都存在9caa5bc8-5b41-eb11-8da9-e4434bdf6706.svg子模21aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg使得70aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg。满足以上条件的9caa5bc8-5b41-eb11-8da9-e4434bdf6706.svg模称为半单模或者完全可约模。对于群代数dca453ce-5b41-eb11-8da9-e4434bdf6706.svg7ba95bc8-5b41-eb11-8da9-e4434bdf6706.svg上提供的表示95a95bc8-5b41-eb11-8da9-e4434bdf6706.svg称为完全可约表示
证明:
1 e0a453ce-5b41-eb11-8da9-e4434bdf6706.svg  2:设 39aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg7ba95bc8-5b41-eb11-8da9-e4434bdf6706.svg 的子模。由Zorn引理存在一个(集合包含意义下的)极大子模 21aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 使得 e5a453ce-5b41-eb11-8da9-e4434bdf6706.svg 。我们要证 70aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 。如不然,则存在一个单子模 e9a453ce-5b41-eb11-8da9-e4434bdf6706.svg 。于是 eaa453ce-5b41-eb11-8da9-e4434bdf6706.svg ,即 eca453ce-5b41-eb11-8da9-e4434bdf6706.svg 。这与 21aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 的极大性矛盾。因此 70aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 。 2 e0a453ce-5b41-eb11-8da9-e4434bdf6706.svg  1:首先我们证明 7ba95bc8-5b41-eb11-8da9-e4434bdf6706.svg 有至少一个单 9caa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 子模。固定 f4a453ce-5b41-eb11-8da9-e4434bdf6706.svg ,于是 f5a453ce-5b41-eb11-8da9-e4434bdf6706.svg7ba95bc8-5b41-eb11-8da9-e4434bdf6706.svg 的一个循环子模。考虑 9caa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 的一个极大左理想 fda453ce-5b41-eb11-8da9-e4434bdf6706.svg ,则 fea453ce-5b41-eb11-8da9-e4434bdf6706.svg 是一个 f5a453ce-5b41-eb11-8da9-e4434bdf6706.svg 的一个极大子模。由题设存在 7ba95bc8-5b41-eb11-8da9-e4434bdf6706.svg 的另一个子模 21aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 使得 06a553ce-5b41-eb11-8da9-e4434bdf6706.svg ,于是 08a553ce-5b41-eb11-8da9-e4434bdf6706.svg 因此有 9caa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 模同构: 0ba553ce-5b41-eb11-8da9-e4434bdf6706.svg 其中 0ea553ce-5b41-eb11-8da9-e4434bdf6706.svg 是单 9caa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 模由 fda453ce-5b41-eb11-8da9-e4434bdf6706.svg 的极大性。故 13a553ce-5b41-eb11-8da9-e4434bdf6706.svg7ba95bc8-5b41-eb11-8da9-e4434bdf6706.svg 的子单模。 考虑集族及其上定义的偏序: 15a553ce-5b41-eb11-8da9-e4434bdf6706.svg 16a553ce-5b41-eb11-8da9-e4434bdf6706.svg 由前面的论述有 17a553ce-5b41-eb11-8da9-e4434bdf6706.svg ,因此Zorn引理推出 18a553ce-5b41-eb11-8da9-e4434bdf6706.svg 有一个极大元 1ca553ce-5b41-eb11-8da9-e4434bdf6706.svg 。由题设存在 7ba95bc8-5b41-eb11-8da9-e4434bdf6706.svg 的另一个子模 72aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 使得 22a553ce-5b41-eb11-8da9-e4434bdf6706.svg1ca553ce-5b41-eb11-8da9-e4434bdf6706.svg 的极大性, 72aa5bc8-5b41-eb11-8da9-e4434bdf6706.svg7ba95bc8-5b41-eb11-8da9-e4434bdf6706.svg 的单子模,因此命题得证。
从完全可约表示的定义和Maschke定理我们有如下推论:

推论 1.10

76a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 是有限群,且 79a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 。则每个有限维表示 95a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 都是完全可约的。

定义 1.11 半单代数

9caa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 是域 74a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 上的代数。若 9caa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 的左模都是完全可约的,则称 9caa5bc8-5b41-eb11-8da9-e4434bdf6706.svg 是半单代数。

推论 1.12

76a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 是有限群,且 79a95bc8-5b41-eb11-8da9-e4434bdf6706.svg 。则群代数 8aa95bc8-5b41-eb11-8da9-e4434bdf6706.svg 是半单代数。
研究群表示 95a95bc8-5b41-eb11-8da9-e4434bdf6706.svg ,等价于研究 8aa95bc8-5b41-eb11-8da9-e4434bdf6706.svg 模的结构。由Maschke定理, 8aa95bc8-5b41-eb11-8da9-e4434bdf6706.svg 是半单代数。因此我们在下一节构建关于半单代数的理论,并以此研究群表示的结构。
89cedcbb49921127928020d05dd96268.png
24588da98ab502eb2e3e1313da9ad123.png
0e81eccc002f01c261020a0b4e09af85.png
c89c68f54e79366ce004d25a336dd342.png

404cf6b9006318e3a03279eb685f1a49.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值