- 表示与群代数
- 半单代数的结构
- 特征标理论
- 诱导表示与限制表示
- 应用:Burnside
定理
- Konstantin Ardakov, Lecture Notes on B2.1 Introduction to Representation Theory(2020-2021)
- 丘维声,群表示论
定义 1.1 表示
设我们接下来将证明,给定一个是有限群,
是有限维向量空间。
在
上的>一个表示是指一个群同态
其中表示
的次数即
的维数
。若
,则称
是忠实的。
定义 1.2 群代数
设表示是有限群。考虑
上以
为基自由生成的向量空间:
其上可定义乘法结构:
可以验证,这个乘法与
上的标量乘法相容。于是
就成为
上的一个代数。
Example 1.3 群表示的例子
设群表示之间有同态映射:是一个有限群。
- 平凡表示: 群表示
满足对于任意
,
,称为
的平凡表示。
- 正则表示: 群表示
满足
,称为
的(左)正则表示。
自身是一阶左
自由模,称为左正则
模,它的子模就是
的左理想。
- 矩阵表示: 群表示
称为
的一个矩阵表示。
- 置换表示: 设
是一个有限集。考虑
上以
为基自由生成的向量空间:
一个群作用
可以线性地扩充成一个群表示
,由如下方式给出:
![]()
称为
的一个置换表示。
定义 1.4 表示同态
设用模论的语言,表示同态和
是群
的两个表示。若线性映射
使得对于任意
,有
,则称
是表示
与
之间的同态。若
是双射,则称之为表示同构。
定义 1.5 稳定子空间
设是一个群表示,它定义了
上的一个左
模结构。设
是一个
的子空间。若对于任意
和
,有
,那么
称为
的
稳定子空间。
定义 1.6 子表示,商表示
设是一个群表示。
是
稳定子空间。
- 由
提供的
的子表示,是指群同态
,满足
对所有
和
成立。换而言之,子空间
是
的左
子模。
- 由
提供的
的商表示,是指群同态
,满足
对所有
和
成立。换而言之,商空间
是
的左
商模。
定义 1.7 既约表示
若表示表示论的核心就是在至多同构的情况下找到群没有非平凡真
稳定子空间,则称之为既约表示。换而言之,作为左
模,
是单模。
定理 1.8 Maschke定理
设证明:是有限群,且
。设
是
模,
是
的
子模。则存在
的
子模
使得
。
首先设是
中关于
的一个线性补空间,即
。设
是这个直和分解到
上的投影。即对
和
有
。由
,可以定义线性变换
![]()
容易验证
是一个
模同态,且
也是一个从
到
的投影。设
,则由模的第一同构定理,
是
的
子模。且由投影的性质有
![]()
命题 1.9 半单模,完全可约表示
设证明:是
代数,
是左
模,且
。以下命题等价:
- 存在
的一族单
子模
,使得
;
- 对
的任意
子模
,都存在
子模
使得
。满足以上条件的
模称为半单模或者完全可约模。对于群代数
,
上提供的表示
称为完全可约表示。
1从完全可约表示的定义和Maschke定理我们有如下推论:2:设
是
的子模。由Zorn引理存在一个(集合包含意义下的)极大子模
使得
。我们要证
。如不然,则存在一个单子模
。于是
,即
。这与
的极大性矛盾。因此
。 2
1:首先我们证明
有至少一个单
子模。固定
,于是
是
的一个循环子模。考虑
的一个极大左理想
,则
是一个
的一个极大子模。由题设存在
的另一个子模
使得
,于是
因此有
模同构:
其中
是单
模由
的极大性。故
是
的子单模。 考虑集族及其上定义的偏序:
![]()
由前面的论述有
,因此Zorn引理推出
有一个极大元
。由题设存在
的另一个子模
使得
由
的极大性,
是
的单子模,因此命题得证。
推论 1.10
设是有限群,且
。则每个有限维表示
都是完全可约的。
定义 1.11 半单代数
设是域
上的代数。若
的左模都是完全可约的,则称
是半单代数。
推论 1.12
设研究群表示是有限群,且
。则群代数
是半单代数。



