作者介绍:英国牛津大学 Mathematical Institute
放假了。上学期学了有限群的线性表示。这是一门要考试的课,所以做个简短的期末复习。
计划中的目录
- 表示与群代数
- 半单代数的结构
- 特征标理论
- 诱导表示与限制表示
- 应用:Burnside 定理
- Konstantin Ardakov, Lecture Notes on B2.1 Introduction to Representation Theory(2020-2021)
- 丘维声,群表示论
定义 1.1 表示
设 是有限群, 是有限维向量空间。 在 上的>一个表示是指一个群同态 其中表示 的次数即 的维数 。若 ,则称 是忠实的。我们接下来将证明,给定一个 上群 的 表示,等价于在 上定义一个 模结构,其中将要定义的 是群 在域 上的群代数。群代数可以视为 在 上的“线性扩充”。
定义 1.2 群代数
设 是有限群。考虑 上以 为基自由生成的向量空间: 其上可定义乘法结构: 可以验证,这个乘法与 上的标量乘法相容。于是 就成为 上的一个代数。表示 可以线性地扩充到 上。定义 : 易验证 是从 到 的 代数同态。于是 定义了 上的一个左 模结构: 反过来,设 向量空间 是一个左 模。则 上有自然的群同态 ,由如下方式给出: 这是群 在 上的一个 表示。 这样,我们就把左 模和群 的 表示自然对应了起来。以后我们会不加声明地交换使用这两个概念。 接下来给出一些群表示的重要栗子。
Example 1.3 群表示的例子
设 是一个有限群。群表示之间有同态映射:一个群作用 可以线性地扩充成一个群表示 ,由如下方式给出: 称为 的一个置换表示。
- 平凡表示: 群表示满足对于任意,,称为的平凡表示。
- 正则表示: 群表示满足,称为的(左)正则表示。自身是一阶左自由模,称为左正则模,它的子模就是的左理想。
- 矩阵表示: 群表示称为的一个矩阵表示。
- 置换表示: 设是一个有限集。考虑上以为基自由生成的向量空间:
定义 1.4 表示同态
设 和 是群 的两个表示。若线性映射 使得对于任意 ,有 ,则称 是表示 与 之间的同态。若 是双射,则称之为表示同构。用模论的语言,表示同态 给出了左 模 与 之间的一个模同态: 群表示有子表示和商表示:
定义 1.5 稳定子空间
设 是一个群表示,它定义了 上的一个左 模结构。设 是一个 的子空间。若对于任意 和 ,有 ,那么 称为 的 稳定子空间。
定义 1.6 子表示,商表示
设 是一个群表示。 是 稳定子空间。
- 由提供的的子表示,是指群同态,满足对所有和成立。换而言之,子空间是的左子模。
- 由提供的的商表示,是指群同态,满足对所有和成立。换而言之,商空间是的左商模。
定义 1.7 既约表示
若表示 没有非平凡真 稳定子空间,则称之为既约表示。换而言之,作为左 模, 是单模。表示论的核心就是在至多同构的情况下找到群 的所有既约表示。 接下来我们给出表示论的第一个有趣的结论:
定理 1.8 Maschke定理
设 是有限群,且 。设 是 模, 是 的 子模。则存在 的 子模 使得 。证明:
首先设 是 中关于 的一个线性补空间,即 。设 是这个直和分解到 上的投影。即对 和 有 。由 ,可以定义线性变换 容易验证 是一个 模同态,且 也是一个从 到 的投影。设 ,则由模的第一同构定理, 是 的 子模。且由投影的性质有
命题 1.9 半单模,完全可约表示
设 是 代数, 是左 模,且 。以下命题等价:证明:
- 存在的一族单子模,使得 ;
- 对的任意子模,都存在子模使得。满足以上条件的模称为半单模或者完全可约模。对于群代数,上提供的表示称为完全可约表示。
1 2:设 是 的子模。由Zorn引理存在一个(集合包含意义下的)极大子模 使得 。我们要证 。如不然,则存在一个单子模 。于是 ,即 。这与 的极大性矛盾。因此 。 2 1:首先我们证明 有至少一个单 子模。固定 ,于是 是 的一个循环子模。考虑 的一个极大左理想 ,则 是一个 的一个极大子模。由题设存在 的另一个子模 使得 ,于是 因此有 模同构: 其中 是单 模由 的极大性。故 是 的子单模。 考虑集族及其上定义的偏序: 由前面的论述有 ,因此Zorn引理推出 有一个极大元 。由题设存在 的另一个子模 使得 由 的极大性, 是 的单子模,因此命题得证。从完全可约表示的定义和Maschke定理我们有如下推论:
推论 1.10
设 是有限群,且 。则每个有限维表示 都是完全可约的。
定义 1.11 半单代数
设 是域 上的代数。若 的左模都是完全可约的,则称 是半单代数。
推论 1.12
设 是有限群,且 。则群代数 是半单代数。研究群表示 ,等价于研究 模的结构。由Maschke定理, 是半单代数。因此我们在下一节构建关于半单代数的理论,并以此研究群表示的结构。