群同态基本定理证明_群论(7): 群代数, 群表示基础

本文深入探讨群论中的群代数概念,介绍了Maschke定理及其在域上有限维群代数的应用。通过函数环的构建,阐述了点态乘法和卷积函数环的乘法规则。此外,文章还讨论了代数闭域上的群表示论,包括矩阵环的分解、共轭类和群代数的中心等关键主题。
摘要由CSDN通过智能技术生成

fe8905ca6eb0bc81cea6d74db3e684b4.png

内容提要:

1 群代数; 2 域上的有限维群代数和Maschke定理; 3 函数环; 4 代数闭域上的群表示论; 本文主要参考文献.

本文的前置内容为:

格罗卜:群论(1): 群, 同构定理, 循环群

格罗卜:群论(2): 群作用, Sylow定理

更多内容,请移步专栏目录:

格罗卜:格罗卜的数学乐园-目录​zhuanlan.zhihu.com
a5cee4b664ae5c6fe42645f0d37807a6.png

1-1. [群代数] 如果

是一个群,
为一个交换环. 我们来定义群代数
.
  • (1)
    首先是自由
    -模, 它有基
  • (2)
    的乘法由群乘法给出, 并线性扩张到整个
    上.

:

的幺元为
.

1-2. [整群环上的模] 如果

是一个群, 则称
整群环. 整群环
上有左模
, 那么对于
, 成立:
  • ;
  • ;
  • .

反之, 假如我们有群

和交换群
,
作用在
上满足这三点:
  • ;
  • .

那么交换群

有唯一的
-模结构.

1-3. [群代数的泛性质]

是一个群,
为一个交换环. 群代数
是一个
-代数
和一个映射
的对
, 满足如下泛性质: 对任意的
-代数
和任意满足
的映射
, 都存在唯一的
-代数同态
, 满足
.

1-4. [乘积的群代数]

是一个群,
为一个交换环. 那么
的群代数为
.
[证明] 抽象废话.

2 域上的有限维群代数和Maschke定理

2-1. [非特征

情形群代数可以不半单]
有限群,
是域.
, 那么
不是半单环.
[证明] 首先定义一个特殊元素
, 它显然不是
, 并且对于任意的
都有
, 由此可见
是一个
双侧理想.
然而
, 也就是说
,
.

2-2. [向量空间态射变模态射]

有限群,
是域.
. 对于任意的
, 定义
, 那么有
.

2-3. [Maschke定理]

有限群,
是域.
, 那么
是半单环.
[证明] 对于任意的
的子模
,

作为
-向量空间有直和分解:
,

考虑投射
, 并令
, 于是有
,
, 因此
.

2-4. [例子]

阶循环群,
是域, 则
.

2-5. [例子]

,
是域, 则
同构于Laurent多项式环.

3 函数环

3-1. [点态函数环]

有限群,
是域. 现在来给出群代数的对偶, 也就是
点态函数环.

我们记

, 也就是全体函数
.
  • 作为有限维
    -向量空间有对偶基:

我们来给出

的乘法结构.
  • 的乘法: 点态乘法.
  • 的幺元为
    即在任意
    处取
    值的函数.
  • 的零元为
    , 即任意
    处取
    值的函数.
  • 为两两正交的幂等元, 所以
    .

3-2. [卷积函数环]

有限群,
是域. 现在来给出另一种函数环, 也就是
卷积函数环.

我们记

, 也就是全体函数
.
  • 作为有限维
    -向量空间有对偶基:

我们来给出

的乘法结构.
  • 的乘法: 任意
    定义乘法:
    .
  • 的幺元为
    .
  • 的零元为
    , 即任意
    处取
    值的函数.
  • , 所以作为
    -代数有
    .

4 代数闭域上的群表示论

4-0. 基本假定: 在此小节中, 始终假定

有限群,
代数闭域,
.

4-1. [分解为矩阵环的积] 由于

有限群,
代数闭域,
. 那么根据 Wedderburn-Artin定理, 我们有
.

4-2. [数量关系] 条件同4-1, 我们有

.
[证明] 直接比较维数即可.

4-3.

作为
的子代数有自然的
-模结构, 由
,
确定, 因此存在如下的正合序列:

,
  • 我们总是可以认为
    , 即分解中的子代数
    .

4-4. [共轭类]

表示
的全部共轭类, 令
, 那么
都在
的中心.

4-5. [群代数的中心] 根据定义, 我们有:

.

进一步地, 有:

.
[证明] 首先, 显然的
-线性无关的.

然后, 对于任意
, 任意
, 由
可以得到

对任意
,
.

4-6. [数量关系] 我们有

. 这里
在4-4中定义,
在4-1中定义.

4-7. [交换群情形]

是交换群当且仅当有
.

4-8. [Schur引理]

有限群,
代数闭域,
.
是单
-模, 那么
.
[证明]
是有限维可除
-代数, 因此
.

4-9. [一般线性群] 给定

-向量空间
,
的一般线性群
是所有
上的可逆线性变换的集合, 和函数复合作为二元运算组成的群.

4-10. [有限群的表示]

为有限群,
的一个表示
是一个从
的群同态, 这里
-向量空间,.

4-11. [一一对应] 给定

-模
, 则
-向量空间, 且模作用自然诱导了一个
上的线性表示. 给定一
-线性空间
与群表示
, 则该表示自然确定了一个
上的
-模结构. 特别的, 这两种自然对应是一一对应.

本文主要参考文献: Joseph J.Rotman : 高等近世代数, Advanced Modern Algebra, 出版社:机械工业出版社, ISBN:9787111191605

高等近世代数 (豆瓣)​book.douban.com
0d74b213574bb269ec8973f5a47bb183.png
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值