tcga数据下载_肿瘤研究不能不知道的TCGA数据库挖掘工具大全,TCGA再也不愁

v2-605670d1072ec996efde9031b8ae0978_b.jpg

TCGA数据库的挖掘工具层出不穷,从数据下载到数据挖掘,这里小编给大家整理一份官网的数据挖掘工具大全:

1. http://www.cancerimagingarchive.net/ The Cancer Imaging Archive (TCIA) TCIA存储了TCGA病人的影像学资料,如MRI,CT等,以DICOM文件格式存储,还提供与患者结果,治疗细节,基因组学,病理学和专家分析等图像相关的信息。

v2-914316561666b227b275bb7684da48e0_b.jpg

1. https://www.tcpaportal.org/ The Cancer Proteome Atlas (TCPA), 由MD Anderson Cancer Center开发的用于TCGA蛋白质组学数据下载,挖掘可视化的网站。

v2-0c5245fdd0cfa44fd835e553220bfb4a_b.jpg

1. http://www.cbioportal.org/ cbioportal大家比较熟悉啦,由Memorial Sloan-Kettering Cancer Center开发的用于TCGA数据下载,分析挖掘可视化的强大工具。

v2-aae7cfc9ca6282a6a7ea67a90c85caf9_b.jpg

1. http://portals.broadinstitute.org/tcga/home Copy Number Portal,由大名鼎鼎的Broad 研究所开发的用于探索TCGA数据拷贝数变异的网站,支持GISTIC 分析。

v2-93322bedeed0d557ec953fb9969a987e_b.jpg

1. https://bioinformatics.mdanderson.org/main/FASMIC FASMIC数据库,由MD Anderson Cancer Center开发的用于分析突变数据的网络平台。

v2-f724d9b4c8daccfc50511a8692abf8e2_b.jpg

1. https://bioinformatics.mdanderson.org/main/DeMixT DeMixT是一个R软件包,可对来自两个或三个组分混合物的转录组数据进行解卷积,估计单个样品的组分特异性比例和表达谱。

2. http://gdac.broadinstitute.org/ Firehose 由Broad 研究所开发的一套处理和分析大规模基因组和蛋白质组数据的方法和流程,可提供数据下载。

v2-ef32f1d756773d2576303ca5301e540e_b.jpg

1. http://firebrowse.org/ Firebrowse 由 Broad研究所开发的用于TCGA数据挖掘可视化的网络平台,提供基因表达,突变等综合挖掘分析功能,类似于cBioportal.

v2-8f1022fede0f8acba0c74d84bbb57ccb_b.jpg

1. https://github.com/khuranalab/FunSeq2_DC FunSeq2 由Weill Cornell Medicine 开发的一个用于探索突变和非编码变异的工具,以多种肿瘤基因组数据为背景。

2. http://software.broadinstitute.org/software/igv/ 由Broad研究所开发的Integrative Genomics Viewer (IGV) 一种高性能可视化工具,用于交互式探索大型集成数据集。

v2-029c235f7de5f33bf96cac3d9131a18d_b.jpg

1. https://bioinformatics.mdanderson.org/tcgambatch/ MBatch由MD Anderson Cancer Center开发的基于Web的工具,用于识别和量化处理的TCGA数据中存在的批处理效果,支持分层聚类分析和增强的PCA分析。

2. http://explorer.cancerregulome.org/ 由Center for Systems Analysis of the Cancer Regulome开发的基于Web的交互式工具,用于可视化和探索临床和分子TCGA数据之间的关联。

v2-7e8a2723d59eca7409f09286e96455b3_b.jpg

1. https://bioinformatics.mdanderson.org/survnet/ SurvNet 由Anderson Cancer Center开发的基于网络的工具,用于识别与患者生存数据相关的基于网络的生物标记物。

2. https://ibl.mdanderson.org/tanric/_design/basic/index.html TANRIC由MD Anderson Cancer Center开发的LncRNA数据挖掘工具,支持多种数据挖掘,可视化分析。

v2-ce242535a01a2dd0aa22a3a16072e5f6_b.jpg

15. https://tumormap.ucsc.edu/ TumorMap 由UC Santa Cruz开发的一个强大的数据挖掘工具

v2-97af87541909ddd7666f09f280934e72_b.jpg

16. http://xena.ucsc.edu/ Xena就更不用说,集数据下载,挖掘可视化于一体的强大工具

v2-ebfce70d38195321032a2f63bf6b17c2_b.jpg

当然啦,数据库虽多,不要贪杯哦,内容就分享到这,希望对大家有帮助。更多内容欢迎关注我们,我们公众号(医科研)里还有很多很多干货。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值