【生信分析】基于TCGA肿瘤数据进行基因共表达网络分析

WGCNA概述

WGCNA(Weighted Gene Coexpression Network Analysis)是一个基于基因表达数据构建基因共表达网络的方法。WGCNA差异基因分析的区别在于:

  • 差异基因分析主要针对样本之间的差异,
  • WGCNA主要针对基因之间的关系。

WGCNA原文

WGCNA begins with the understanding that the information captured by microarray experiments is far richer than a list of
differentially expressed genes. Rather, microarray data are more completely represented by considering the relationships 
between measured transcripts, which can be assessed by pai
### 基因共表达网络可视化工具与方法 在生物信息学领域,基因共表达网络(Gene Co-expression Network, GCN)是一种用于研究基因间相互作用的强大工具。通过构建和分析这些网络,可以揭示潜在的功能模块以及调控机制。以下是几种常用的基因共表达网络可视化工具及其特点: #### 工具概述 1. **Cytoscape** Cytoscape 是一种广泛使用的开源软件平台,支持复杂的网络数据分析和可视化[^1]。它提供了丰富的插件态系统,能够处理多种类型的物学数据集。例如,用户可以通过导入基因表达矩阵来共表达网络,并利用其强大的布局算法优化节点分布。 2. **WGCNA (Weighted Gene Co-expression Network Analysis)** WGCNA 是 R 中的一个包,专门设计用来识别高度关联的基因簇并探索它们之间的关系[^3]。该方法基于加权相关性度量建立无向图模型,在实际应用中常与其他绘图程序结合展示最终成果。 3. **BioLayout Express³D** 这是一款专注于转录组数据可视化的应用程序,特别适合于大规模RNA-seq实验产的海量息处理需求[^4]。除了二维平面呈现外,还允许三维空间内的交互操作,从而更直观地理解复杂结构特征。 4. **Gephi** 虽然最初并非专为命科学研究而开发,但凭借灵活的数据输入选项及先进的图形渲染引擎,Gephi 成为了另一个备受欢迎的选择之一[^2]。对于希望自定义样式或者深入挖掘局部拓扑特性的研究人员来说尤为适用。 5. **NetworkX with Matplotlib/Seaborn in Python** 如果倾向于编程实现,则可考虑采用Python中的NetworkX库配合Matplotlib或Seaborn完成基本功能定制化程度较高的项目任务。这种方法给予开发者极大的自由去调整参数设置满足特定科研目标的要求。 #### 数据预处理建议 无论选用哪种具体手段之前都需要做好充分准备阶段的工作——即高质量原始读数文件经过一系列标准化流程之后才能作为有效素材投入使用。这通常涉及但不限于如下几个方面: - 使用 ArrayExpressHTS 对高通量测序数据执行初步清理校正作业; - 应用 STAR Aligner 或者 HISAT2 将短序列片段映射到参考基因组上; - 利用 DESeq2 / edgeR 等统计框架评估差异显著水平. 最后值得注意的是,当面对跨染色体级别的联系探讨时,二进制接触地图技术可能提供额外帮助以便更好地捕捉远距离互作事件的存在形式. ```python import networkx as nx import matplotlib.pyplot as plt # 创建简单示例图 G = nx.Graph() edges = [('A', 'B'), ('B', 'C'), ('C', 'D')] G.add_edges_from(edges) plt.figure(figsize=(8, 6)) pos = nx.spring_layout(G) nx.draw_networkx_nodes(G, pos, node_size=700) nx.draw_networkx_labels(G, pos) nx.draw_networkx_edges(G, pos, edgelist=G.edges(), alpha=0.5) plt.axis('off') plt.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

镰刀韭菜

看在我不断努力的份上,支持我吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值