ViT 实战 万字全攻略:从图像分类到医学影像,Transformer 重塑视觉 AI

摘要:本文深度解析 ViT(Vision Transformer)算法在视觉任务中的原理与实践,涵盖图像分类、目标检测、语义分割及医学影像分析四大领域。从理论出发,详细拆解图像分块、位置编码、Transformer 编码器等核心机制;通过 PyTorch 与 Timm 库实现模型构建、训练与优化,提供 CIFAR-10、Pascal VOC、Cityscapes 及医学数据集的完整代码示例。针对工业级部署,重点介绍模型量化、TensorRT 加速、Flask API 开发及 Docker 容器化方案。文章还探索多模态融合、3D 医学图像分析等前沿方向,结合梯度可视化与注意力机制增强模型可解释性。适合深度学习开发者、计算机视觉研究人员及医疗 AI 从业者学习参考。



ViT 实战 万字全攻略:从图像分类到医学影像,Transformer 重塑视觉 AI

一、引言

在计算机视觉领域,卷积神经网络(CNN)长期以来占据着主导地位。然而,Transformer架构在自然语言处理中取得了巨大成功后,研究人员开始尝试将其引入视觉领域。ViT(Vision Transformer)算法应运而生,它打破了

### 使用 Vision Transformer (ViT) 模型实现医学图像二分类任务 #### 数据预处理 对于医学图像数据集,确保所有图片尺寸一致非常重要。由于ViT模型主要用于二维图像,在处理三维医学影像时需特别注意。可以考虑将3D体素转换为多个2D切片或将整个3D体积作为输入传递给改进后的ViT架构如VIT-V-Net[^2]。 ```python import numpy as np from PIL import Image import torch from torchvision.transforms import Compose, Resize, ToTensor def preprocess_image(image_path): transform = Compose([ Resize((224, 224)), # 调整大小至适合ViT输入的分辨率 ToTensor() # 将PIL图像转为PyTorch张量并归一化到[0., 1.]范围 ]) image = Image.open(image_path).convert('RGB') tensor = transform(image) return tensor.unsqueeze(0) # 添加批次维度 ``` #### 加载预训练 ViT 模型 利用现有的预训练权重初始化ViT有助于加速收敛过程,并可能提高最终模型的表现力。这里以Hugging Face Transformers库为例展示加载方式: ```python from transformers import ViTFeatureExtractor, ViTForImageClassification feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k') model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224-in21k', num_labels=2) # 设置模型为评估模式(如果仅做预测) model.eval() ``` #### 修改最后一层适应特定任务需求 为了使ViT适用于具体的二分类问题,需要调整最后几层神经元的数量以及激活函数的选择。通常情况下会移除原有的全连接层,并替换成新的具有两个输出节点的新一层,分别代表两类标签的概率分布。 ```python from torch.nn import Linear, LogSoftmax num_features = model.classifier.in_features model.classifier = Linear(num_features, 2) output_activation = LogSoftmax(dim=-1) ``` #### 训练与验证流程 定义损失函数、优化器之后即可开始迭代更新参数直至满足停止条件;期间还需定期保存最佳版本以便后续部署使用。 ```python criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5) for epoch in range(num_epochs): running_loss = 0.0 for inputs, labels in train_loader: optimizer.zero_grad() outputs = model(inputs)['logits'] loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() print(f'Epoch {epoch}, Loss: {running_loss/len(train_loader)}') torch.save(model.state_dict(), 'best_model.pth') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI_DL_CODE

您的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值