ViT 实战 万字全攻略:从图像分类到医学影像,Transformer 重塑视觉 AI

摘要:本文深度解析 ViT(Vision Transformer)算法在视觉任务中的原理与实践,涵盖图像分类、目标检测、语义分割及医学影像分析四大领域。从理论出发,详细拆解图像分块、位置编码、Transformer 编码器等核心机制;通过 PyTorch 与 Timm 库实现模型构建、训练与优化,提供 CIFAR-10、Pascal VOC、Cityscapes 及医学数据集的完整代码示例。针对工业级部署,重点介绍模型量化、TensorRT 加速、Flask API 开发及 Docker 容器化方案。文章还探索多模态融合、3D 医学图像分析等前沿方向,结合梯度可视化与注意力机制增强模型可解释性。适合深度学习开发者、计算机视觉研究人员及医疗 AI 从业者学习参考。



ViT 实战 万字全攻略:从图像分类到医学影像,Transformer 重塑视觉 AI

一、引言

在计算机视觉领域,卷积神经网络(CNN)长期以来占据着主导地位。然而,Transformer架构在自然语言处理中取得了巨大成功后,研究人员开始尝试将其引入视觉领域。ViT(Vision Transformer)算法应运而生,它打破了传统CNN的范式,直接利用Transformer强大的序列建模能力来处理图像,为计算机视觉带来了新的思路和方法。

本文将深入探讨ViT算法在视觉任务中的原理,并通过实操流程和完整代码,详细介绍如何在图像分类、目标检测、语义分割和医学图像分析等任务中应用ViT算法。

二、ViT算法原理回顾

2.1 整体架构思路

ViT的核心是将Transformer架构引入计算机视觉领域。传统的计算机视觉模型多基于CNN,而ViT打破了这种范式,直接利用Transformer强大的序列建模能力来处理图像。它将图像分割成多个小块,将这些小块作为序列输入到Transformer中进行处理。

2.2 图像分块与嵌入

  • 图像分块:ViT首先将输入图像分割成多个固定大小且不重叠的图像块(Patch)。例如,对于一张224×224的图像,如果每个图像块的大小设定为16×16,那么就会得到14×14 = 196个图像块。
  • 线性嵌入:每个图像块会被展平为一维向量,然后通过一个线性投影层将其映射到一个固定维度的向量空间中,得到每个图像块的嵌入表示。

2.3 添加位置编码

为了让模型能够感知图像块在原始图像中的相对位置信息,ViT会给每个图像块的嵌入向量添加位置编码。位置编码是一个与嵌入向量维度相同的向量,通过将其与图像块嵌入向量相加,使得模型能够学习到图像块之间的空间位置关系。

2.4 输入Transformer编码器

经过位置编码的图像块嵌入向量会被输入到Transformer编码器中。Transformer编码器由多个相同的编码层堆叠而成,每个编码层包含多头自注意力机制(Multi - Head Self - Attention)和前馈神经网络(Feed - Forward Network)。

  • 多头自注意力机制:它允许模型在处理每个图像块时,关注到其他图像块的信息,从而捕捉图像中不同区域之间的全局依赖关系。
  • 前馈神经网络:对经过自注意力机制处理后的特征进行非线性变换,进一步提取特征信息。

2.5 分类头

在Transformer编码器的输出中,通常会添加一个特殊的分类标记([CLS])。最后,将这个分类标记的输出向量输入到一个全连接层,得到图像的分类预测结果。

三、实操环境搭建

3.1 安装必要的库

我们将使用PyTorch作为深度学习框架,同时还需要安装一些辅助库,如torchvision用于图像数据处理,timm库中包含了预训练的ViT模型。在命令行中执行以下命令进行安装:

pip install torch torchvision timm

3.2 数据集准备

为了演示ViT在不同视觉任务中的应用,我们将使用不同的数据集。

3.2.1 图像分类数据集

对于图像分类任务,我们使用CIFAR - 10数据集。它包含10个不同类别的60000张32×32彩色图像,其中训练集50000张,测试集10000张。可以使用torchvision库直接下载和加载该数据集:

import torchvision
import torchvision.transforms as transforms

# 数据预处理
transform = transforms.Compose([
    transforms.Resize((224, 224)),  # 将图像调整为224x224大小
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])

# 加载训练集
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=32,
                                          shuffle=True, num_workers=2)

# 加载测试集
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=32,
                                         shuffle=False, num_workers=2)

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
3.2.2 目标检测数据集

对于目标检测任务,我们可以使用Pascal VOC数据集。它包含了20个不同类别的图像,并且标注了每个目标的边界框。可以使用torchvision库提供的接口下载和加载该数据集:

import torchvision
from torchvision.datasets import VOCDetection

# 数据预处理
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])

# 加载训练集
trainset = VOCDetection(root='./data', year='2012', image_set='train',
                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                          shuffle=True, num_workers=2)

# 加载测试集
testset = VOCDetection(root='./data', year='2012', image_set='val',
                       download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
                                         shuffle=False, num_workers=2)
3.2.3 语义分割数据集

对于语义分割任务,我们可以使用Cityscapes数据集。它包含了城市街道场景的图像,并且标注了每个像素的语义类别。可以使用torchvision库提供的接口下载和加载该数据集:

import torchvision
from torchvision.datasets import Cityscapes

# 数据预处理
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])

# 加载训练集
trainset = Cityscapes(root='./data', split='train', mode='fine',
                      target_type='semantic', transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                          shuffle=True, num_workers=2)

# 加载测试集
testset = Cityscapes(root='./data', split='val', mode='fine',
                     target_type='semantic', transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
                                         shuffle=False, num_workers=2)
3.2.4 医学图像数据集

对于医学图像分析任务,我们可以使用公开的医学图像数据集,如ChestX - ray14。该数据集包含了112120张胸部X光图像,并且标注了14种不同的疾病类别。可以从官方网站下载该数据集,并进行相应的预处理。

四、ViT在图像分类任务中的应用

4.1 构建ViT模型

我们使用timm库中预训练的ViT模型进行图像分类任务。以下是构建模型的代码:

import torch
import timm

# 加载预训练的ViT模型
model = timm.create_model('vit_base_patch16_224', pretrained=True)

# 修改最后一层全连接层,以适应CIFAR - 10的10个类别
num_classes = 10
model.head = torch.nn.Linear(model.head.in_features, num_classes)

4.2 训练模型

定义损失函数和优化器,然后进行模型训练:

import torch.optim as optim
import torch.nn as nn

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)

# 训练模型
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)

num_epochs = 10
for epoch in range(num_epochs):
    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        inputs, labels = data[0].to(device), data[1].to(device)

        optimizer.zero_grad()

        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if i % 200 == 199:
            print(f'[{
     epoch + 1}, {
     i + 1:5d}] loss: {
     running_loss / 200:.3f}')
            running_loss = 0.0

print
### 使用 Vision Transformer (ViT) 模型实现医学图像二分类任务 #### 数据预处理 对于医学图像数据集,确保所有图片尺寸一致非常重要。由于ViT模型主要用于二维图像,在处理三维医学影像时需特别注意。可以考虑将3D体素转换为多个2D切片或将整个3D体积作为输入传递给改进后的ViT架构如VIT-V-Net[^2]。 ```python import numpy as np from PIL import Image import torch from torchvision.transforms import Compose, Resize, ToTensor def preprocess_image(image_path): transform = Compose([ Resize((224, 224)), # 调整大小至适合ViT输入的分辨率 ToTensor() # 将PIL图像转为PyTorch张量并归一化到[0., 1.]范围 ]) image = Image.open(image_path).convert('RGB') tensor = transform(image) return tensor.unsqueeze(0) # 添加批次维度 ``` #### 加载预训练 ViT 模型 利用现有的预训练权重初始化ViT有助于加速收敛过程,并可能提高最终模型的表现力。这里以Hugging Face Transformers库为例展示加载方式: ```python from transformers import ViTFeatureExtractor, ViTForImageClassification feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k') model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224-in21k', num_labels=2) # 设置模型为评估模式(如果仅做预测) model.eval() ``` #### 修改最后一层适应特定任务需求 为了使ViT适用于具体的二分类问题,需要调整最后几层神经元的数量以及激活函数的选择。通常情况下会移除原有的全连接层,并替换成新的具有两个输出节点的新一层,分别代表两类标签的概率分布。 ```python from torch.nn import Linear, LogSoftmax num_features = model.classifier.in_features model.classifier = Linear(num_features, 2) output_activation = LogSoftmax(dim=-1) ``` #### 训练与验证流程 定义损失函数、优化器之后即可开始迭代更新参数直至满足停止条件;期间还需定期保存最佳版本以便后续部署使用。 ```python criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5) for epoch in range(num_epochs): running_loss = 0.0 for inputs, labels in train_loader: optimizer.zero_grad() outputs = model(inputs)['logits'] loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() print(f'Epoch {epoch}, Loss: {running_loss/len(train_loader)}') torch.save(model.state_dict(), 'best_model.pth') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI_DL_CODE

您的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值