摘要:本文深度解析 ViT(Vision Transformer)算法在视觉任务中的原理与实践,涵盖图像分类、目标检测、语义分割及医学影像分析四大领域。从理论出发,详细拆解图像分块、位置编码、Transformer 编码器等核心机制;通过 PyTorch 与 Timm 库实现模型构建、训练与优化,提供 CIFAR-10、Pascal VOC、Cityscapes 及医学数据集的完整代码示例。针对工业级部署,重点介绍模型量化、TensorRT 加速、Flask API 开发及 Docker 容器化方案。文章还探索多模态融合、3D 医学图像分析等前沿方向,结合梯度可视化与注意力机制增强模型可解释性。适合深度学习开发者、计算机视觉研究人员及医疗 AI 从业者学习参考。
文章目录
ViT 实战 万字全攻略:从图像分类到医学影像,Transformer 重塑视觉 AI
一、引言
在计算机视觉领域,卷积神经网络(CNN)长期以来占据着主导地位。然而,Transformer架构在自然语言处理中取得了巨大成功后,研究人员开始尝试将其引入视觉领域。ViT(Vision Transformer)算法应运而生,它打破了