python cnn 回归模型_【深度学习系列】CNN模型的可视化

前面几篇文章讲到了卷积神经网络CNN,但是对于它在每一层提取到的特征以及训练的过程可能还是不太明白,所以这节主要通过模型的可视化来神经网络在每一层中是如何训练的。我们知道,神经网络本身包含了一系列特征提取器,理想的feature map应该是稀疏的以及包含典型的局部信息。通过模型可视化能有一些直观的认识并帮助我们调试模型,比如:feature map与原图很接近,说明它没有学到什么特征;或者它几乎是一个纯色的图,说明它太过稀疏,可能是我们feature map数太多了(feature_map数太多也反映了卷积核太小)。可视化有很多种,比如:feature map可视化、权重可视化等等,我以feature map可视化为例。

模型可视化

因为我没有搜到用paddlepaddle在imagenet 1000分类的数据集上预训练好的googLeNet inception v3,所以用了keras做实验,以下图作为输入:输入图片北汽绅宝D50:

feature map可视化

取网络的前15层,每层取前3个feature map。

北汽绅宝D50 feature map:

从左往右看,可以看到整个特征提取的过程,有的分离背景、有的提取轮廓,有的提取色差,但也能发现10、11层中间两个feature map是纯色的,可能这一层feature map数有点多了,另外北汽绅宝D50的光晕对feature map中光晕的影响也能比较明显看到。Hypercolumns 通常我们把神经网络最后一个fc全连接层作为整个图片的特征表示,但是这一表示可能过于粗糙(从上面的feature map可视化也能看出来),没法精确描述局部空间上的特征,而网络的第一层空间特征又太过精确,缺乏语义信息(比如后面的色差、轮廓等),于是论文《

把北汽绅宝D50 第1、4、7层的feature map以及第1, 4, 7, 10, 11, 14, 17层的feature map分别做平均,可视化如下:

代码实践

# -*- coding: utf-8 -*-

from keras.applications import InceptionV3

from keras.applications.inception_v3 import preprocess_input

from keras.preprocessing import image

from keras.models import Model

from keras.applications.imagenet_utils import decode_predictions

import numpy as np

import cv2

from cv2 import *

import matplotlib.pyplot as plt

import scipy as sp

from scipy.misc import toimage

def test_opencv():

# 加载摄像头

cam = VideoCapture(0) # 0 -> 摄像头序号,如果有两个三个四个摄像头,要调用哪一个数字往上加嘛

# 抓拍 5 张小图片

for x in range(0, 5):

s, img = cam.read()

if s:

imwrite("o-" + str(x) + ".jpg", img)

def load_original(img_path):

# 把原始图片压缩为 299*299大小

im_original = cv2.resize(cv2.imread(img_path), (299, 299))

im_converted = cv2.cvtColor(im_original, cv2.COLOR_BGR2RGB)

plt.figure(0)

plt.subplot(211)

plt.imshow(im_converted)

return im_original

def load_fine_tune_googlenet_v3(img):

# 加载fine-tuning googlenet v3模型,并做预测

model = InceptionV3(include_top=True, weights='imagenet')

model.summary()

x = image.img_to_array(img)

x = np.expand_dims(x, axis=0)

x = preprocess_input(x)

preds = model.predict(x)

print('Predicted:', decode_predictions(preds))

plt.subplot(212)

plt.plot(preds.ravel())

plt.show()

return model, x

def extract_features(ins, layer_id, filters, layer_num):

'''

提取指定模型指定层指定数目的feature map并输出到一幅图上.

:param ins: 模型实例

:param layer_id: 提取指定层特征

:param filters: 每层提取的feature map数

:param layer_num: 一共提取多少层feature map

:return: None

'''

if len(ins) != 2:

print('parameter error:(model, instance)')

return None

model = ins[0]

x = ins[1]

if type(layer_id) == type(1):

model_extractfeatures = Model(input=model.input, output=model.get_layer(index=layer_id).output)

else:

model_extractfeatures = Model(input=model.input, output=model.get_layer(name=layer_id).output)

fc2_features = model_extractfeatures.predict(x)

if filters > len(fc2_features[0][0][0]):

print('layer number error.', len(fc2_features[0][0][0]),',',filters)

return None

for i in range(filters):

plt.subplots_adjust(left=0, right=1, bottom=0, top=1)

plt.subplot(filters, layer_num, layer_id + 1 + i * layer_num)

plt.axis("off")

if i < len(fc2_features[0][0][0]):

plt.imshow(fc2_features[0, :, :, i])

# 层数、模型、卷积核数

def extract_features_batch(layer_num, model, filters):

'''

批量提取特征

:param layer_num: 层数

:param model: 模型

:param filters: feature map数

:return: None

'''

plt.figure(figsize=(filters, layer_num))

plt.subplot(filters, layer_num, 1)

for i in range(layer_num):

extract_features(model, i, filters, layer_num)

plt.savefig('sample.jpg')

plt.show()

def extract_features_with_layers(layers_extract):

'''

提取hypercolumn并可视化.

:param layers_extract: 指定层列表

:return: None

'''

hc = extract_hypercolumn(x[0], layers_extract, x[1])

ave = np.average(hc.transpose(1, 2, 0), axis=2)

plt.imshow(ave)

plt.show()

def extract_hypercolumn(model, layer_indexes, instance):

'''

提取指定模型指定层的hypercolumn向量

:param model: 模型

:param layer_indexes: 层id

:param instance: 模型

:return:

'''

feature_maps = []

for i in layer_indexes:

feature_maps.append(Model(input=model.input, output=model.get_layer(index=i).output).predict(instance))

hypercolumns = []

for convmap in feature_maps:

for i in convmap[0][0][0]:

upscaled = sp.misc.imresize(convmap[0, :, :, i], size=(299, 299), mode="F", interp='bilinear')

hypercolumns.append(upscaled)

return np.asarray(hypercolumns)

if __name__ == '__main__':

img_path = '~/auto1.jpg'

img = load_original(img_path)

x = load_fine_tune_googlenet_v3(img)

extract_features_batch(15, x, 3)

extract_features_with_layers([1, 4, 7])

extract_features_with_layers([1, 4, 7, 10, 11, 14, 17])

总结

还有一些网站做的关于CNN的可视化做的非常不错,譬如这个网站:http://shixialiu.com/publications/cnnvis/demo/,大家可以在训练的时候采取不同的卷积核尺寸和个数对照来看训练的中间过程。最近PaddlePaddle也开源了可视化工具VisaulDL,下篇文章我们讲讲paddlepaddle的visualDL和tesorflow的tensorboard。

作者:胡晓曼 Python爱好者社区专栏作者,请勿转载,谢谢。

博客专栏:CharlotteDataMining的博客专栏

配套视频教程:三个月教你从零入门深度学习!| 深度学习精华实践课程

公众号:Python爱好者社区(微信ID:python_shequ),关注,查看更多连载内容。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是一个用于生成 CNN 回归模型 Grad-CAM 可视化的 PyTorch 代码示例: ```python import torch from torch.autograd import Variable import torch.nn.functional as F import cv2 import numpy as np class GradCAM: def __init__(self, model, target_layer): self.model = model self.target_layer = target_layer self.feature_maps = None self.gradients = None def forward(self, x): for name, module in self.model.named_children(): x = module(x) if name == self.target_layer: self.feature_maps = x return x def backward(self, target_class): one_hot = torch.zeros(self.outputs.size()) one_hot[0][target_class] = 1 self.model.zero_grad() self.outputs.backward(gradient=one_hot, retain_graph=True) self.gradients = self.target_layer.grad.cpu().data.numpy()[0] def generate(self, x, target_class): x = x.unsqueeze(0) x = Variable(x, requires_grad=True) self.forward(x) self.backward(target_class) weights = np.mean(self.gradients, axis=(1,2)) cam = np.zeros(self.feature_maps.shape[1:], dtype=np.float32) for i, w in enumerate(weights): cam += w * self.feature_maps[i, :, :] cam = np.maximum(cam, 0) cam = cv2.resize(cam, x.shape[2:]) cam = cam - np.min(cam) cam = cam / np.max(cam) return cam ``` 这个 GradCAM 类可以生成用于 CNN 回归模型 Grad-CAM 可视化的热力图。使用时,需要将目标 CNN 模型和目标层名称传递给 GradCAM 类的构造函数。然后,可以使用 forward() 方法计算特征映射,使用 backward() 方法计算梯度,最后使用 generate() 方法生成 Grad-CAM 可视化。 需要注意的是,示例代码中使用的目标 CNN 模型是一个简单的分类模型,因此需要根据实际情况进行修改。此外,还需要根据实际情况调整输入图像的大小和目标类别。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值