要判断一个点是否在多边形内,可以使用射线法或者奇偶规则。下面分别介绍这两种方法的实现。
射线法
射线法的思路是从点出发,向任意方向发出一条射线,统计射线与多边形的交点个数。如果交点个数为奇数,则点在多边形内,否则不在多边形内。下面是使用 C# 实现射线法判断点是否在多边形内的一个例子:
using System;
using System.Collections.Generic;
class Program
{
static void Main(string[] args)
{
// 假设有一个多边形,由以下四个点构成
List<PointF> polygon = new List<PointF> { new PointF(0, 0), new PointF(2, 0), new PointF(2, 2), new PointF(0, 2) };
// 假设有一个点,坐标为 (1, 1)
PointF point = new PointF(1, 1);
// 统计射线与多边形的交点个数
int count = 0;
for (int i = 0; i < polygon.Count; i++)
{
PointF p1 = polygon[i];
PointF p2 = polygon[(i + 1) % polygon.Count];
if (p1.Y == p2.Y) continue; // 排除水平边
if (point.Y >= Math.Min(p1.Y, p2.Y) && point.Y < Math.Max(p1.Y, p2.Y))
{
float x = (point.Y - p1.Y) * (p2.X - p1.X) / (p2.Y - p1.Y) + p1.X;
if (x > point.X) count++;
}
}
// 判断点是否在多边形内
bool isInside = count % 2 == 1;
Console.WriteLine(isInside ? "点在多边形内" : "点不在多边形内");
}
}
该程序中,多边形由四个点构成,点的坐标为 (1, 1)。程序统计射线与多边形的交点个数,并根据交点个数的奇偶性进行判断,最终输出结果。
奇偶规则
奇偶规则的思路是从点出发,向任意方向发出一条射线,统计射线与多边形的交点个数。如果交点个数为奇数,则点在多边形内,否则不在多边形内。与射线法不同的是,奇偶规则不需要考虑射线的方向。下面是使用 C# 实现奇偶规则判断点是否在多边形内的一个例子:
using System;
using System.Collections.Generic;
class Program
{
static void Main(string[] args)
{
// 假设有一个多边形,由以下四个点构成
List<PointF> polygon = new List<PointF> { new PointF(0, 0), new PointF(2, 0), new PointF(2, 2), new PointF(0, 2) };
// 假设有一个点,坐标为 (1, 1)
PointF point = new PointF(1, 1);
// 统计射线与多边形的交点个数
int count = 0;
for (int i = 0; i < polygon.Count; i++)
{
PointF p1 = polygon[i];
PointF p2 = polygon[(i + 1) % polygon.Count];
if (point.Y >= Math.Min(p1.Y, p2.Y) && point.Y < Math.Max(p1.Y, p2.Y))
{
if (p1.X == p2.X) continue; // 排除竖直边
float x = (point.Y - p1.Y) * (p2.X - p1.X) / (p2.Y - p1.Y) + p1.X;
if (x > point.X) count++;
}
}
// 判断点是否在多边形内
bool isInside = count % 2 == 1;
Console.WriteLine(isInside ? "点在多边形内" : "点不在多边形内");
}
}
该程序中,多边形由四个点构成,点的坐标为 (1, 1)。程序统计射线与多边形的交点个数,并根据交点个数的奇偶性进行判断,最终输出结果。