关于旋转中心的计算以及运用

首先摆上套用公式:

x=(x1-x2)cosθ-(y1-y2)sinθ+x2
y=(y1-y2)cosθ+(x1-x2)sinθ+y2

Remark: x2,y2为旋转中心,x1,y1为Mark点坐标,θ为旋转角度,
x,y为Mark点绕旋转中心旋转θ角度后的坐标。
旋转中心的计算方法:
在机器视觉行业一般采用FitCircle 拟合圆的方式计算得出。或者通过3组或者3组以上坐标算出。

为什么需要用到旋转中心呢? 因为机器人或者机器轴吸取物料时,轴心和产品中心不一致,所以转θ角度后的位置需要旋转中心算出来。但是必须要算旋转中心吗?其实也可以不需要。这点补充放下一章补充。

貌似大家对不求旋转中心的思路有点好奇,但是这段时间在忙项目实在没时间整理资料。 先放一下思路:
求旋转中心是为了实现:求特征点绕旋转中心旋转theta角度后的位置,最后得出新的特征点坐标。
抛弃这种思路,换一种想法, 我们是已知特征点的坐标了, 那么我们其实也可以把特征点当成旋转的位置,即机械轴绕特征点旋转。
对位引导总结: 求旋转中心的思路是先旋转theta实现角度平行,然后移动XY实现对位。 不求旋转中心思路是, 先移动XY, 再转角度。

相关推荐
©️2020 CSDN 皮肤主题: 猿与汪的秘密 设计师:白松林 返回首页