给定01矩阵求连通域_关于矩阵多项式的特征值 (? ???ω??? ?)

来了,这次为大家带来丘维声《高等代数》第五章第5节课后习题。讨论矩阵多项式的特征值问题。

对于一个

次多项式
级矩阵
关于它的矩阵多项式是指以下矩阵:

一个很自然的问题就是,如果我们知道了

的全部特征值
,那么关于
级矩阵
的多项式矩阵
,它的全部特征值会是什么呢?

有一个事实不难验证,如果

的一个特征值,
是属于
的一个特征向量,那么

所以

是矩阵多项式
的一个特征值,
是属于
的特征向量。

但这样还不够,我们还想知道,这些特征值的重数有没有变化,是否会产生新的特征值。所以就有了下面的题目。

是数域
上的
级矩阵,
的特征多项式
在复数域中的所有根(它们中有可能有相同的),证明:

a)对于复数域中的任意多项式

,有

b)对于数域

上的任一多项式
,有
的特征多项式
在复数域中的全部根,从而如果
重特征值,那么
的至少
重特征值。

a)把多项式
在复数域上分解,设其根为
,那么:

带入
并分解成如上形式,得到

再将

的特征值带入多项式
,得到

作为

的特征多项式,
可以分解成:

那么多项式

就可以写成

这样,多项式矩阵

的行列式便可以写成:

这样,我们就证明了

b)其实a)只是一个准备工作,我们将要利用它完成这道题的证明。

我们要找到特征多项式

在复数域中的所有根,一个很自然的想法是,我们令多项式
,这样,上面的特征多项式便可以写成

这样,对于每一个确定的复数

,我们都可以根据a)将多项式
写成

这就表明,特征多项式

的全部复数根都是
。所以特定根
的重数也是只增不减(考虑到多项式有可能将不同的
映射到同一个
的值)。

回答@火熠微潇 的问题,矩阵多项式

的特征向量是不是一定是
的特征向量?

答案是否定的,虽然特征值的代数重数并没有变化,但不代表其几何重数没有发生变化,因为相应特征值的特征子空间的维数取决于其代数重数。这可以从以下简单的例子看出来:

设n级矩阵

易知

的特征值只有0,而且0是n重特征值,注意这是代数重数,0的几何重数为1,即特征值0的特征子空间的维数为1,即特征子空间为:

现在来看

,其矩阵为:

易知它也只有一个n重特征值0,但是0的特征子空间的维数从1变成了2,其特征子空间为:

其中

很显然

,但是
。从而
的特征向量不一定是
的特征向量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值