lstm模型_深度学习模型 CNN+LSTM 预测收盘价

—— 本篇文章 by HeartBearting

上一篇浏览量很大,感谢各位的关注!
能够在这里分享一些实验,一起领略 数据科学之美,也很开心。
以后,这个实验的模型会不断深化。
之后,也会分享一些 论文里 基于深度学习的时间序列预测模型。数据由JQData本地量化金融数据支持


上一篇做了2个实验,预测黄金期货主力合约的收盘价。


实验2:
使用历史前5个时刻的 open close high low volume money
预测当前时刻的收盘价,
即 [None, 5, 6] => [None, 1] # None是 batch_size

这一篇对 第2个实验的模型 进行拓展,增加CNN层
因为 对每个样本是5行,6列的数据,二维数据,能够使用CNN进行特征提取

模型架构
输入层
CNN进行特征提取,+池化层+dropout
双向LSTM层
输出层

9aa2182f409b87c7c78ed366898b8e7b.png

实验结果:是测试集的结果。test为测试集的真实收盘价,pred为模型预测的收盘价

a9ba8ffd5cc70ee20b296bddb97baf35.png

研究结果查阅方式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值