金融分析很简单,利用Python分析股票交易中的滚动Z值

本文将使用Python解锁市场见解:分析股票交易中的滚动Z值。

微信搜索关注《Python学研大本营》,加入读者群,分享更多精彩

图片

图片

ASML.AS股票价格的变化与30天、60天和90天滚动Z值并列。绿色和红色标记分别标示了基于Z-Score阈值的潜在买入和卖出点。

1. 简介

在不断演变的股票交易领域,能够利用数据和统计学的力量提供重要的优势。无论是预测未来价格、分析市场趋势,还是简单地评估特定股票的波动性,数据驱动的见解已经改变了交易者对股市的处理方式。这就是Z值的用途,它是一种统计指标,可以为交易者提供有关股票的相对优势和定位的宝贵见解。

想象一下,只需通过观察股票的历史价格和波动性,就能够简单地识别出股票何时可能被过度买入或卖出。这正是Z值可以提供的,本文将深入探讨如何利用Python(作为数据分析的强大工具)进行股票交易中的Z值计算和解读。

图片

图片

突出显示Z值超过1.5或低于-1.5的正态分布区域。这种可视化方法强调了极端股票价格波动的统计意义,指导交易者寻找潜在的离群机会和股价逆转信号。

2. 深入了解Z值

Z值提供了一个数据点相对于均值的标准差距离的度量。在交易中,这可以帮助我们了解股票当前价格是否在统计上“正常”,或者是否为异常值。

想象一下表示正态分布的钟形曲线。大多数股票价格(假设它们服从正态分布,这是一个很大的假设,实际交易中通常并非如此)将位于中间附近。那些位于尾部,超出一定Z值(如1.5或-1.5)的股票,才会引起我们的兴趣。

图片

Z值公式:这是一个数学表示,详细说明了如何使用总体标准差对偏离均值的程度进行标准化。对于希望将股票价格相对于历史数据量化的交易者来说,这个方程式至关重要。

其中:

  • Z是Z值。

  • X是数据点的值。

  • μ是数据的平均值。

  • σ是标准差。

通过以Z值的视角分析股票价格,交易者可以识别潜在的买入/卖出机会。明显高于1.5的Z值可能表明该股票相对于其历史平均价格被高估,而明显低于-1.5的Z值可能表明相反情况。

3. 使用库和数据做准备

在深入研究之前,装备正确的工具是至关重要的。通过导入相关的Python库,如用于获取股票数据的yfinance和用于可视化的matplotlib,可以确保一个顺利的开始。

import yfinance as yf
import pandas as pd
import matplotlib.pyplot as plt

4. 获取股票数据和初步设置

为了评估股票的异常情况,接下来将目标锁定在一只特定的股票上——为了演示的目的,本文选择了“ASML.AS”。然后,我们使用yfinance库获取历史股票数据。

tickerSymbol = "ASML.AS"
tickerData = yf.Ticker(tickerSymbol)
tickerDf = tickerData.history(period='1d', start='2020-1-1', end='2023-12-25')

5. 计算Z值

本文分析的核心是Z值公式,它有助于评估股票价格相对于其历史的“偏离程度”。本文针对多个滚动期来计算这个值,以捕捉短期和长期的异常情况。

rolling_mean = close_prices.rolling(window=period).mean()
rolling_std = close_prices.rolling(window=period).std()
z_scores = (close_prices - rolling_mean) / rolling_std

6. 使用信号可视化偏离

通过将滚动Z值与股票价格绘制在一起,我们可以了解股票行为“正常”的时间以及何时可能出现异常情况。特别是Z值超过±1.5的区域,这种视觉线索对于交易者非常重要。可以随意更改Z值的阈值。

import yfinance as yf
import pandas as pd
import matplotlib.pyplot as plt

# 常量
Z_THRESH = 2
PERIODS = [30, 60, 90]
TICKER_SYMBOL = "ASML.AS"
START_DATE = '2020-1-1'
END_DATE = '2023-12-25'


def fetch_data(ticker_symbol, start_date, end_date):
    """Fetches historical data for a given ticker symbol."""
    ticker_data = yf.Ticker(ticker_symbol)
    return ticker_data.history(period='1d', start=start_date, end=end_date)

def calculate_z_scores(close_prices, periods):
    """Calculates Z-scores for given periods."""
    z_scores_dict = {}
    for period in periods:
        # 计算给定周期的滚动平均值
        rolling_mean = close_prices.rolling(window=period).mean()      
        # 计算给定周期的滚动标准差
        rolling_std = close_prices.rolling(window=period).std()       
        # 计算收盘价的Z值
        z_scores = (close_prices - rolling_mean) / rolling_std      
        # 将Z值存储在以周期为关键字的字典中
        z_scores_dict[period] = z_scores
    return z_scores_dict

def plot_data(close_prices, z_scores_data):
    """Plots close prices and z-scores."""   
    
    # 为收盘价和Z值创建子图
    fig, (ax1, ax2) = plt.subplots(2, sharex=True, figsize=(20, 8))   
    
    # 在第一个子图上绘制收盘价
    ax1.plot(close_prices.index, close_prices, label='Close Prices')
    for period, z_scores in z_scores_data.items():
        # 在第二个子图上绘制每个时期的Z值
        ax2.plot(z_scores.index, z_scores, label=f'Z-Scores {period} days', alpha=0.7)       
        # 如果周期是列表中的第一个,则在第一个子图上绘制买入/卖出信号
        if period == PERIODS[0]:
            buy_signals = (z_scores < -Z_THRESH)
            sell_signals = (z_scores > Z_THRESH)
            ax1.plot(close_prices[buy_signals].index, close_prices[buy_signals], 'o', color='g', label='Buy Signal')
            ax1.plot(close_prices[sell_signals].index, close_prices[sell_signals], 'o', color='r', label='Sell Signal')
    # 为收盘价子图设置y标签和图例
    ax1.set_ylabel('Close Prices')
    ax1.legend(loc="upper left")
    ax1.grid(True)
    
    # 在Z值子图上绘制表示Z值阈值的水平线
    ax2.axhline(-Z_THRESH, color='red', linestyle='--')
    ax2.axhline(Z_THRESH, color='red', linestyle='--')   
    # 设置Z值子图的Y标签和图例
    ax2.set_ylabel('Z-Scores')
    ax2.legend(loc="upper left")
    ax2.grid(True)

    # 为整个绘图设置主标题
    plt.suptitle(f'{TICKER_SYMBOL} Close Prices and Z-Scores {Z_THRESH} Treshold')
    # 显示图表
    plt.show()

# 获取股票代码的历史数据
ticker_data = fetch_data(TICKER_SYMBOL, START_DATE, END_DATE)

# 计算指定时期的Z值
z_scores_data = calculate_z_scores(ticker_data['Close'], PERIODS)

# 绘制收盘价和Z值
plot_data(ticker_data['Close'], z_scores_data)

图片

ASML.AS股票价格的变化与30天、60天和90天滚动Z值并列。绿色和红色标记分别表示基于Z值阈值的潜在买入和卖出点。

7. 结论与进一步思考

虽然Z值提供了一种数学方法来进行股票分析,但最重要的是要记住交易涉及众多因素。Z值可以是工具箱的一部分,但一定要将统计见解与全面的市场研究相结合。

推荐书单

IT BOOK 多得(点击查看5折活动书单)icon-default.png?t=N7T8https://u.jd.com/psx2y1M

《Python数据分析从入门到精通》

《Python数据分析从入门到精通》全面介绍了使用Python进行数据分析所必需的各项知识。全书共分为14章,包括了解数据分析、搭建Python数据分析环境、Pandas统计分析、Matplotlib可视化数据分析图表、Seaborn可视化数据分析图表、第三方可视化数据分析图表Pyecharts、图解数组计算模块NumPy、数据统计分析案例、机器学习库Scikit-Learn、注册用户分析(MySQL版)、电商销售数据分析与预测、二手房房价分析与预测,以及客户价值分析。

该书所有示例、案例和实战项目都提供源码,另外该书的服务网站提供了模块库、案例库、题库、素材库、答疑服务,力求为读者打造一本“基础入门+应用开发+项目实战”一体化的Python数据分析图书。

《Python数据分析从入门到精通》内容详尽,图文丰富,非常适合作为数据分析人员的学习参考用书,也可作为想拓展数据分析技能的普通职场人员和Python开发人员学习参考用书。

《Python数据分析从入门到精通》icon-default.png?t=N7T8https://item.jd.com/13288736.html

图片

精彩回顾

《手把手教你创建数据科学Docker镜像》

《使用Python控制和监测Docker容器》

《OLAP与OLTP:数据处理系统的比较分析》

《性能优化,利用Python ORM优化SQL查询》

《5个高效的数据科学Python库》

《12个必知必会的Docker命令》

微信搜索关注《Python学研大本营》,加入读者群

访问【IT今日热榜】,发现每日技术热点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值