本文将使用Python解锁市场见解:分析股票交易中的滚动Z值。
微信搜索关注《Python学研大本营》,加入读者群,分享更多精彩
ASML.AS股票价格的变化与30天、60天和90天滚动Z值并列。绿色和红色标记分别标示了基于Z-Score阈值的潜在买入和卖出点。
1. 简介
在不断演变的股票交易领域,能够利用数据和统计学的力量提供重要的优势。无论是预测未来价格、分析市场趋势,还是简单地评估特定股票的波动性,数据驱动的见解已经改变了交易者对股市的处理方式。这就是Z值的用途,它是一种统计指标,可以为交易者提供有关股票的相对优势和定位的宝贵见解。
想象一下,只需通过观察股票的历史价格和波动性,就能够简单地识别出股票何时可能被过度买入或卖出。这正是Z值可以提供的,本文将深入探讨如何利用Python(作为数据分析的强大工具)进行股票交易中的Z值计算和解读。
突出显示Z值超过1.5或低于-1.5的正态分布区域。这种可视化方法强调了极端股票价格波动的统计意义,指导交易者寻找潜在的离群机会和股价逆转信号。
2. 深入了解Z值
Z值提供了一个数据点相对于均值的标准差距离的度量。在交易中,这可以帮助我们了解股票当前价格是否在统计上“正常”,或者是否为异常值。
想象一下表示正态分布的钟形曲线。大多数股票价格(假设它们服从正态分布,这是一个很大的假设,实际交易中通常并非如此)将位于中间附近。那些位于尾部,超出一定Z值(如1.5或-1.5)的股票,才会引起我们的兴趣。
Z值公式:这是一个数学表示,详细说明了如何使用总体标准差对偏离均值的程度进行标准化。对于希望将股票价格相对于历史数据量化的交易者来说,这个方程式至关重要。
其中:
-
Z是Z值。
-
X是数据点的值。
-
μ是数据的平均值。
-
σ是标准差。
通过以Z值的视角分析股票价格,交易者可以识别潜在的买入/卖出机会。明显高于1.5的Z值可能表明该股票相对于其历史平均价格被高估,而明显低于-1.5的Z值可能表明相反情况。
3. 使用库和数据做准备
在深入研究之前,装备正确的工具是至关重要的。通过导入相关的Python库,如用于获取股票数据的yfinance
和用于可视化的matplotlib
,可以确保一个顺利的开始。
import yfinance as yf
import pandas as pd
import matplotlib.pyplot as plt
4. 获取股票数据和初步设置
为了评估股票的异常情况,接下来将目标锁定在一只特定的股票上——为了演示的目的,本文选择了“ASML.AS”。然后,我们使用yfinance
库获取历史股票数据。
tickerSymbol = "ASML.AS"
tickerData = yf.Ticker(tickerSymbol)
tickerDf = tickerData.history(period='1d', start='2020-1-1', end='2023-12-25')
5. 计算Z值
本文分析的核心是Z值公式,它有助于评估股票价格相对于其历史的“偏离程度”。本文针对多个滚动期来计算这个值,以捕捉短期和长期的异常情况。
rolling_mean = close_prices.rolling(window=period).mean()
rolling_std = close_prices.rolling(window=period).std()
z_scores = (close_prices - rolling_mean) / rolling_std
6. 使用信号可视化偏离
通过将滚动Z值与股票价格绘制在一起,我们可以了解股票行为“正常”的时间以及何时可能出现异常情况。特别是Z值超过±1.5的区域,这种视觉线索对于交易者非常重要。可以随意更改Z值的阈值。
import yfinance as yf
import pandas as pd
import matplotlib.pyplot as plt
# 常量
Z_THRESH = 2
PERIODS = [30, 60, 90]
TICKER_SYMBOL = "ASML.AS"
START_DATE = '2020-1-1'
END_DATE = '2023-12-25'
def fetch_data(ticker_symbol, start_date, end_date):
"""Fetches historical data for a given ticker symbol."""
ticker_data = yf.Ticker(ticker_symbol)
return ticker_data.history(period='1d', start=start_date, end=end_date)
def calculate_z_scores(close_prices, periods):
"""Calculates Z-scores for given periods."""
z_scores_dict = {}
for period in periods:
# 计算给定周期的滚动平均值
rolling_mean = close_prices.rolling(window=period).mean()
# 计算给定周期的滚动标准差
rolling_std = close_prices.rolling(window=period).std()
# 计算收盘价的Z值
z_scores = (close_prices - rolling_mean) / rolling_std
# 将Z值存储在以周期为关键字的字典中
z_scores_dict[period] = z_scores
return z_scores_dict
def plot_data(close_prices, z_scores_data):
"""Plots close prices and z-scores."""
# 为收盘价和Z值创建子图
fig, (ax1, ax2) = plt.subplots(2, sharex=True, figsize=(20, 8))
# 在第一个子图上绘制收盘价
ax1.plot(close_prices.index, close_prices, label='Close Prices')
for period, z_scores in z_scores_data.items():
# 在第二个子图上绘制每个时期的Z值
ax2.plot(z_scores.index, z_scores, label=f'Z-Scores {period} days', alpha=0.7)
# 如果周期是列表中的第一个,则在第一个子图上绘制买入/卖出信号
if period == PERIODS[0]:
buy_signals = (z_scores < -Z_THRESH)
sell_signals = (z_scores > Z_THRESH)
ax1.plot(close_prices[buy_signals].index, close_prices[buy_signals], 'o', color='g', label='Buy Signal')
ax1.plot(close_prices[sell_signals].index, close_prices[sell_signals], 'o', color='r', label='Sell Signal')
# 为收盘价子图设置y标签和图例
ax1.set_ylabel('Close Prices')
ax1.legend(loc="upper left")
ax1.grid(True)
# 在Z值子图上绘制表示Z值阈值的水平线
ax2.axhline(-Z_THRESH, color='red', linestyle='--')
ax2.axhline(Z_THRESH, color='red', linestyle='--')
# 设置Z值子图的Y标签和图例
ax2.set_ylabel('Z-Scores')
ax2.legend(loc="upper left")
ax2.grid(True)
# 为整个绘图设置主标题
plt.suptitle(f'{TICKER_SYMBOL} Close Prices and Z-Scores {Z_THRESH} Treshold')
# 显示图表
plt.show()
# 获取股票代码的历史数据
ticker_data = fetch_data(TICKER_SYMBOL, START_DATE, END_DATE)
# 计算指定时期的Z值
z_scores_data = calculate_z_scores(ticker_data['Close'], PERIODS)
# 绘制收盘价和Z值
plot_data(ticker_data['Close'], z_scores_data)
ASML.AS股票价格的变化与30天、60天和90天滚动Z值并列。绿色和红色标记分别表示基于Z值阈值的潜在买入和卖出点。
7. 结论与进一步思考
虽然Z值提供了一种数学方法来进行股票分析,但最重要的是要记住交易涉及众多因素。Z值可以是工具箱的一部分,但一定要将统计见解与全面的市场研究相结合。
推荐书单
IT BOOK 多得(点击查看5折活动书单)
https://u.jd.com/psx2y1M
《Python数据分析从入门到精通》
《Python数据分析从入门到精通》全面介绍了使用Python进行数据分析所必需的各项知识。全书共分为14章,包括了解数据分析、搭建Python数据分析环境、Pandas统计分析、Matplotlib可视化数据分析图表、Seaborn可视化数据分析图表、第三方可视化数据分析图表Pyecharts、图解数组计算模块NumPy、数据统计分析案例、机器学习库Scikit-Learn、注册用户分析(MySQL版)、电商销售数据分析与预测、二手房房价分析与预测,以及客户价值分析。
该书所有示例、案例和实战项目都提供源码,另外该书的服务网站提供了模块库、案例库、题库、素材库、答疑服务,力求为读者打造一本“基础入门+应用开发+项目实战”一体化的Python数据分析图书。
《Python数据分析从入门到精通》内容详尽,图文丰富,非常适合作为数据分析人员的学习参考用书,也可作为想拓展数据分析技能的普通职场人员和Python开发人员学习参考用书。
《Python数据分析从入门到精通》https://item.jd.com/13288736.html
精彩回顾
微信搜索关注《Python学研大本营》,加入读者群
访问【IT今日热榜】,发现每日技术热点