向量的点乘和叉乘

1. 向量的点乘

定义

向量点乘又称为内积,结果为标量。

已知空间中的两个向量:a = (x1,y1,z1) , b = (x2,y2,z2) , 则向量a和向量b的内积为:

 a\cdot b=|a||b|cos\theta = x1x2+y1y2+z1z2

几何意义

       点乘的结果表示在 方向上的投影与 ||b|| 的乘积,反映了两个向量在方向上的相似度,结果越大越相似。基于结果可以判断这两个向量是否是同一方向,是否正交垂直,具体对应关系为:

       

        同理,可以内积可以用来计算两个向量之间的夹角

 \theta = arccos(\frac{a\cdot b}{|a||b|}) = arccos(\frac{x1x2+y1y2+z1z2}{|a||b|}) 

代数性质

2.向量的叉乘

        定义叉乘(cross product)又称叉积、外积、向量积(vector product),是对三维度空间中的两个向量的二元运算,使用符号 X。与点积不同,它的运算结果是向量

已知空间中线性无关的两个向量:a = (x1,y1,z1) , b = (x2,y2,z2) , 则向量a和向量b的外积为:

\mathbf{a}\times \mathbf{b} = \left \| \mathbf{a }\right \|\left \| \mathbf{b} \right \|sin(\theta )\mathbf{n}

        其中:  \theta 表示 a 和 b 在它们所定义的平面上的夹角(0^{\circ }\theta180^{\circ })。‖a‖ 和 ‖b‖ 是向量  a 和 b  的模长,而 n 则是一个与 a b 所构成的平面垂直的单位向量,方向由右手定则决定。根据上述公式,当 a 和 b 平行(即\theta为 0° 或 180°)时,它们的外积为零向量 0

     

        矩阵表示

               

 

代数性质:  

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值