[论文笔记|特征点]GMS: Grid-based Motion Statistics for Fast, Ultra-robust Feature Correspondence

本文介绍了一种基于网格的运动统计方法(GMS),用于剔除特征误匹配。该方法将平滑性约束融入到分离的统计框架中,并利用网格进行快速计算。GMS对视点、比例和旋转等变化具有鲁棒性,且速度快,处理50K个匹配只需1-2毫秒。此外,GMS已集成到OpenCV库中。

摘要

提出了一种基于网格的运动统计方法(GMS)以剔除特征误匹配,该方法将平滑性约束融入到分离的统计框架中,并使用网格进行快速计算。GMS对于各种具有挑战性的图像变化是鲁棒的,包括视点、比例和旋转。它的速度也很快,例如,处理了50K个匹配使用一个CPU线程只需要1或2毫秒。这对实时应用有重要的意义。使用c++和OpenCV库(Bradski 2000)来实现算法。代码已经集成到OpenCV库中。

在这里插入图片描述

图1 GMS匹配。尽管比率检验(RT)可以消除ORB产生的许多错误匹配,但在应用中,其结果仍然有噪声(a)。为了解决这个问题,提出了GMS,该GMS进一步消除了运动不一致的对应,从而实现了高精度匹配(b)

在这里插入图片描述

GMS在单个CPU线程中的运行时间。GMS- S和GMS- R表示使用不同的设置分别重复基本GMS 5次和8次,运行时间线性增加。图中没有显示的GMS- SR比基本的GMS消耗了40倍的计算成本。注意,多尺度和多旋转的解决方案可以通过使用多阈值编程来加速,因为在不同的重复中不存在数据依赖性

相关工作

1. 运动统计

在这里插入图片描述

图2.运动统计。真匹配通常比误匹配有更多的相似邻,所以我们计算相似邻的数量来识别更好的匹配。相似邻指的是两幅图像中与参考匹配接近的匹配。

设C为图像I1I_1I1I2I_2I2之间的所有匹配,cic_ici为连接两个图像间的点pip_ipiqiq_iqi之间的匹配。将cic_ici的邻居定义为:
在这里插入图片描述
近似邻定义为:
在这里插入图片描述

其中d()d()d()为两点的欧氏距离,r1,r2r_1,r_2r1,r2为阈值。根据SiS_iS

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值