[基础知识点] 利用消失点进行相机标定

本文深入探讨了消失点的概念及其在计算机视觉中的应用,详细解释了如何通过消失点求解相机的旋转矩阵,这对于理解图像中的三维空间信息至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概念
  1. 消失点是两条平行的直线经透视变换会相交成一点,通俗来讲就是在现实世界中平行的两条线,在图像中相交的点,不再赘述。
  2. 消失线是由水平(或竖直)方向上的消失点组成的线。
    在这里插入图片描述
消失点的性质:

消失点与光心的连线,平行于形成该消失点平面的平行线。所以在空间中互相垂直的几组平行线,对应的消失点与相机光心的连线也互相垂直。如图所示。
在这里插入图片描述

求解

假设 p i p_i pi是消失点对应的像素坐标系,K是内参矩阵,R是旋转矩阵, X i X_i Xi是消失点对应的世界坐标系。对应求三个参数需要三个消失点联立成三个方程进行求解。

求对应的旋转矩阵 R = [ R 1 , R 2 , R 3 ] R=[R_1,R_2,R_3] R=[R1,R2,R3],把右侧消失点与光心的连线作为X轴,对应的世界坐标系为 [ 1 , 0 , 0 ] [1,0,0] [1,0,0],把左侧消失点与光心的连线作为Z轴,对应的世界坐标系为 [ 0 , 0 , 1 ] [0,0,1] [0,0,1],把竖直方向的消失点与光心的连线作为Y轴,对应的世界坐标系为 [ 0 , 1 , 0 ] [0,1,0] [0,1,0],则求解方程为:

V P R i g h t = K [ R 1 , R 2 , R 3 ] [ 1 , 0 , 0 ] T VP_{Right}=K[R_1,R_2,R_3][1,0,0]^T VPRight=K[R1,R2,R3][1,0,0]T
V P L e f t = K [ R 1 , R 2 , R 3 ] [ 0 , 0 , 1 ] T VP_{Left}=K[R_1,R_2,R_3][0,0,1]^T VPLeft=K[R1,R2,R3][0,0,1]T
V P T o p = K [ R 1 , R 2 , R 3 ] [ 0 , 1 , 0 ] T VP_{Top}=K[R_1,R_2,R_3][0,1,0]^T VPTop=K[R1,R2,R3][0,1,0]T

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值