【GPT】Coze使用开放平台接口-【3】创建工作流-通话语音结果分析工作流

Coze使用开放平台接口-【2】创建工作流-语音伪造检测工作流,我们已经成功运用Coze使用开放平台接口-【1】创建插件创建的插件,创建了语音伪造检测的工作流。本文档基于稍微复杂一点的通话语音结果分析工作流,结合大模型,来实现通话语音识别结果分析的工作流。

我们就不针对如何创建工作流做赘述,就根据业务流,以及创建好的工作流来描述节点和步骤。


对通话语音内容总结,有时候会需要处理单声道的历史通话数据语音(现在也有保存成单声道的),所以我们也把 人声分割 接口加入到插件内,当然要分析就要有语音识别,这两个插件都已经在 快商通AI开放平台插件里面了,直接用即可。

大致的流程分为:鉴权->人声分割->语音识别->大模型分析->结果规整输出

用大模型来分析的原因也主要是可以,降低因为语音识别错误导致识别结果偏差的几率。传统把文字都识别出来,专业名词,或者识别不准,出来的结果并不是很好。但是使用大模型,可以根据上下文来分析,这样就可以降低语音识别错误带来的影响。

在这里插入图片描述

我们通过分析节点做了什么事情来描述这个流程,前面的开始节点和鉴权节点就不赘述了。

1. 创建工作流
1.1. 人声分割节点和处理节点

正常这边如果通话语音是双声道的,也不用做人声分割,更多是为了一些单声道的通话语音。

人声分割,我们主要看下输出结果:

  • download url prefix:这个是用于下载语音文件的接口前缀。
  • merge_file_key:这个是分割后的语音文件key,用来传给语音识别用的,后面会说明为什么要用这个语音。

其实主要是用这两个参数,人声分割接口会把分割后的数据合并在一条语音里面,用 2 个声道。因为要传给语音识别,肯定不会是在工作流里面下载,或者读取语音文件,因此需要拼接 url 给语音识别获取。获取的规则,就是 download_url_prefix 拼上 merge_file_key。

在处理人声分割结果节点,处理好后,传给语音识别节点。

在这里插入图片描述

1.2. 语音识别节点以及处理节点

语音识别顾名思义,把语音内容转成文字。我们在人声分割节点,已经分割好了数据,这时候传给语音识别节点的就是一条 2 个声道的语音。那为什么用这个接口呢,因为这个语音转文本接口可以独立返回声道的识别结果。语音转文本,让我们看下输出就知道了:

  • result_str:原本有个result,这个是一个二维数组,对应传入语音的声道下标。估计是因为 coze 不支持二维数组,所以直接把 result 序列话之后用 result_str 返回回来。这个接口返回的不只是文字,也会分句,分句的开始时间和结束时间。这样子,可以给大模型一个时间维度上的判断。分开声道的返回方式,也可以在拼成一个对话文本的时候,有了明确的顺序。而不是 2 段单纯的文字丢给大模型。

不可能直接把 result_str 的结果直接传给大模型分析,这样既浪费 token,也很冗余。所以再用代码节点,把语音识别的结果,按照分句开始时间顺序,拼接成一个对话文本。因为我的场景,默认是客服和客户,所以拼接上了角色。具体的拼接结果,可以看处理语音识别后的结果节点的最终输出的样式。

除了把分句按照时间顺序拼接成一个对话文本,也会用数组的方式返回,这样可以给调用者看到说话的内容,也就是 call_record_array。

在这里插入图片描述

1.3. 大模型节点

大模型我这边用是 Kimi,其实我们之前用的 deepseek 效果也是不错的。

处理语音识别后的结果 节点的 call_record_array 赋值给大模型的参数 asrResult,这样在写 prompt 的时候就可以引用(我不会告诉你我之前天真的以为,它会自己加进去)。提示词其实挺简单,告诉大模型干嘛,然后通话记录在 【】里面,这样大模型就会去分析,结果见 1.4 。

coze 的大模型里面的批处理挺实用的,有时候需要多条处理的时候,很方便(但是小心调用次数)

在这里插入图片描述

1.4. 结果节点

大模型的结果通过 agent_result 输出出来,大模型就会整理出来客户问题,总结客服的回答,客服的处理结果。

除了返回大模型分析结果,也会返回刚才分割出来的语音,以及语音转文本的结果。返回这些结果,会给下一篇创建 bot 的时候,更加丰富。

在这里插入图片描述

总结

这个工作流,把开放平台接口以及大模型整合起来,构建了一个大模型的工作流。比较简单,但是思路是这么个思路。在上一篇以及这一篇,我们创建了 2 个工作流,工作流直接给客户用肯定是不现实,因此需要一个机器人,一个简单的界面也好,或者可视化界面。这样,才可以让工作流能用起来(API 也是可以的)。因此,下一篇讲描述一下 Bot 里面添加这两个工作流的实现,Coze使用开放平台接口-【4】创建机器人


上一篇:Coze使用开放平台接口-【2】创建工作流-语音伪造检测工作流

<think>好的,我现在需要回答用户关于Coze股票分析工作流的流程问题。首先,我得回忆一下用户提供的引用内容,特别是引用1、3、4,这些直接提到了Coze的股票分析工作流。用户可能想了解如何搭建这样的工作流,步骤是什么,需要哪些组件,以及可能的局限性。 根据引用1和4,工作流包括数据获取、处理、分析和输出。引用3提到HTML解析专家的角色,可能涉及从网页抓取数据。因此,流程可能包括配置爬虫获取股票数据,然后使用大模型进行分析。需要确保步骤清晰,并提到使用工具,比如Coze的Bot机器人和工作流配置。 另外,用户可能关心如何将各个步骤连接起来,比如数据输入到处理再到生成报告。还要注意引用中提到的局限性,比如仅支持A股和数据单一,这些需要在回答中提及。同时,可能需要生成相关问题,比如优化方法或扩展数据源。 需要检查是否符合系统级指令:使用正确的中文和LaTeX格式,生成相关问题,结构清晰。确保引用的标注正确,比如[^1]和[^4]在适当的位置。最后,保持回答的步骤明确,帮助用户逐步理解整个流程。</think>### Coze股票分析工作流搭建流程 Coze股票分析工作流主要通过数据获取、处理、分析三大模块实现自动化股票分析,以下是具体步骤: --- #### **1. 数据采集模块** - **输入股票代码** 用户输入目标A股代码(如`600519`),触发工作流执行 - **网页数据抓取** 调用内置爬虫组件获取指定股票信息,例如: ```python # 模拟数据抓取逻辑 def fetch_stock_data(code): url = f"https://stock.api/{code}" return requests.get(url).text ``` - **HTML解析** 使用专业HTML解析器提取关键字段(股价、成交量、财务指标),依赖角色提示词精确提取数据[^3] --- #### **2. 数据处理模块** - **数据清洗** 过滤无效数据,标准化时间序列格式 - **特征计算** 生成技术指标,例如: $$ RSI = 100 - \frac{100}{1 + \frac{\text{平均涨幅}}{\text{平均跌幅}}} $$ - **数据存储** 将结构化数据存入临时数据库供分析模块调用 --- #### **3. AI分析模块** - **大模型调用** 接入支持的LLM(如GPT-3.5)生成分析报告,流程包含: 1. 输入清洗后的数据集 2. 添加分析指令模板(如"生成季度财报评述") 3. 输出结构化分析结论[^1] - **风险预警** 通过设定阈值触发提醒(如PE值超过行业均值30%) --- #### **4. 输出模块** - **多格式生成** 支持Markdown/PDF/邮件等多种输出形式 - **可视化展示** 自动生成K线图、资金流向图等可视化图表 --- ### 当前局限性 1. 仅支持A股市场数据抓取[^1] 2. 依赖第三方数据源更新频率(如日级数据) 3. 可用大模型类型有限(需适配Coze平台接口---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值