【深度学习】yolov8的微调

yolov8的集成度太高了,除了config的哪些参数以外,需要更精细的微调。
比如这里:
https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/tuner.py
在这里插入图片描述
应用场景,交通标志的向左转,向右转之类的,
数字号码的6,9,2,5之类的。81,18, 不太适合镜像反转,左右反转等等。
微调文档在这里:
https://github.com/ultralytics/ultralytics/blob/main/docs/en/integrations/ray-tune.md

在这里插入图片描述

安装一下这个。
pip install -U ultralytics “ray[tune]”

代码的方式只能训练起cpu来,
命令行的方式可以训练起gpu:
yolo classify train data=/home/justin/dataset/jersy-number-class-20240828-all-with-aumentation/ model=yolov8n-cls.pt epochs=300 patience=60 imgsz=64 batch=20480 mosaic=0 device=0,1 flipud=0.0, fliplr=0.0 degrees=20

微调(Fine-tuning)是指在已经训练好的模型基础上,通过对新的数据集进行训练,以适应新的任务或者新的数据集。对于YOLO V8模型的微调,可以按照以下步骤进行: 1. 准备数据集:收集并标注与目标任务相关的图像数据集。确保数据集包含了目标类别的标注信息。 2. 下载预训练模型:从YOLO官方网站或者其他可靠来源下载YOLO V8的预训练模型权重文件。 3. 构建模型:使用YOLO V8的网络结构构建模型,并加载预训练的权重文件。 4. 冻结部分层:根据需要,可以选择冻结模型的一部分层,以防止其权重在微调过程中被更新。这通常适用于底层的卷积层。 5. 修改输出层:根据新的任务需求,修改模型的输出层,以适应新的类别数量。 6. 定义损失函数:根据新的任务需求,定义适当的损失函数,例如交叉熵损失函数。 7. 训练模型:使用新的数据集对模型进行训练。可以选择冻结部分层进行训练,以减少计算量和训练时间。 8. 调整学习率:根据训练过程中的性能表现,逐渐调整学习率,以提高模型的收敛性和性能。 9. 评估模型:使用验证集或测试集对微调后的模型进行评估,以确定模型的性能和准确度。 10. 进行预测:使用微调后的模型对新的图像进行预测,获取目标检测结果。 需要注意的是,微调的效果取决于数据集的质量和数量,以及模型的初始权重和架构选择。此外,微调过程中的超参数调整也可能对结果产生影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值