【深度学习】yolov8的微调

yolov8的集成度太高了,除了config的哪些参数以外,需要更精细的微调。
比如这里:
https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/tuner.py
在这里插入图片描述
应用场景,交通标志的向左转,向右转之类的,
数字号码的6,9,2,5之类的。81,18, 不太适合镜像反转,左右反转等等。
微调文档在这里:
https://github.com/ultralytics/ultralytics/blob/main/docs/en/integrations/ray-tune.md

在这里插入图片描述

安装一下这个。
pip install -U ultralytics “ray[tune]”

代码的方式只能训练起cpu来,
命令行的方式可以训练起gpu:
yolo classify train data=/home/justin/dataset/jersy-number-class-20240828-all-with-aumentation/ model=yolov8n-cls.pt epochs=300 patience=60 imgsz=64 batch=20480 mosaic=0 device=0,1 flipud=0.0, fliplr=0.0 degrees=20

以下是一个基于PyTorch的YOLOv8微调代码的示例: ```python import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from torchvision import transforms from dataset import CustomDataset from model import YOLOv8 # 定义超参数 batch_size = 16 num_epochs = 10 learning_rate = 0.001 # 加载数据集 transform = transforms.Compose([ transforms.Resize((416, 416)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) train_dataset = CustomDataset('train.txt', transform=transform) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) # 加载模型 model = YOLOv8(num_classes=80) model.load_state_dict(torch.load('yolov8n-seg.pt')) # 冻结模型的前几层 for param in model.parameters(): param.requires_grad = False for param in model.backbone.parameters(): param.requires_grad = False # 修改模型的最后一层 model.head.conv[-1] = nn.Conv2d(256, 5 * 3, kernel_size=1, stride=1, padding=0) # 定义损失函数和优化器 criterion = nn.MSELoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) # 训练模型 for epoch in range(num_epochs): for i, (images, targets) in enumerate(train_loader): # 前向传播 outputs = model(images) # 计算损失 loss = 0 for j in range(3): loss += criterion(outputs[j][:, :5, :, :], targets[j][:, :5, :, :]) loss /= 3 # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() # 打印日志 if (i + 1) % 10 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch + 1, num_epochs, i + 1, len(train_loader), loss.item())) # 保存模型 torch.save(model.state_dict(), 'yolov8n-finetune.pt') ``` 其中,`CustomDataset`和`YOLOv8`分别是自定义的数据集和模型,需要根据实际情况进行修改。在微调过程中,我们首先加载预训练模型`yolov8n-seg.pt`,然后冻结模型的前几层,修改模型的最后一层,定义损失函数和优化器,最后进行训练并保存微调后的模型`yolov8n-finetune.pt`。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值