电路理论复习 James W Nilsson

电压的定义:u=dw/dq 分离单位电荷所需的能量;
2. 功率的定义:p=dw/dt =dw/dq*dq/dt=ui 单位时间吸收或发出的功;即单位时间传递能量的能力;
3. 参考方向影响功率的计算符号; 该文章将功率根据关联参考方向和非关联参考方向定义: p=ui or p=-ui p>0 吸收功率 p<0 发出功率;

  1. 电阻的理解:电荷流过电阻性材料,受原子结构的阻碍能力;在传递过程中,部分电能转化为热能;

  2. KVL KCL

  3. 电阻串并联,并联:1/r=1/r1+1/r2+…

  4. 串联均压、并联均流 均流原理: Ij = u/rj = Req*i/rj

  5. 惠斯通电桥的推导:支路电流相等、节点电压相等;

  6. 敏感性分析:电路元件值变化对电路输出的影响;
    10.节点电压法。最好用。已充分掌握;

  7. 戴维南等效电路的推导方法:开路短路法。节点开路和短路情况下,外特性需要相同;

  8. 最大功率传输:由于电源的内阻特性,传递至负载的功率存在最大功率点;也称阻抗匹配;

  9. 运算放大器:负反馈。输出反馈至反向输入端; 采用虚短续断节点电压法可完成所有分析; CMRR common mode rejection ratio CMRR = | Adm/Acm |

  10. 电感、电容、互感 电感:描述单位电流产生磁通的能力 时域测量法; 电感储能:1/2Li^2

  11. 采用matlab实现符号计算。在这里插入图片描述

  12. syms的含义:Create symbolic variables and functions。定义符号变量。

  13. 电容:并联后电容增大,串联后电容减小;

  14. 互感。流入同名段,符号为正; 同名段的物理意义: 流入同名段的电流产生同方向的磁通;磁通有产生电压,相同磁通,产生的电压方向相同;

  15. RL,RC自然响应

第十二章:

第十三章:

  • 采用拉普拉斯变换进行微分变换时,要注意初值问题。对应的等效电路出现常数项;对于电感而言,出现等效电压项;
    电感 − 串联等效电路: U ( t ) = L d i d t U ( s ) = L [ L d i d t ] = L s I ( s ) − L I 0 \text{电感}-\text{串联等效电路:} \\ U\left( t \right) =L\frac{di}{dt} \\ U\left( s \right) =\mathscr{L} \left[ L\frac{di}{dt} \right] =LsI\left( s \right) -LI_0 电感串联等效电路:U(t)=LdtdiU(s)=L[Ldtdi]=LsI(s)LI0 电感 − 并联等效电路: U ( t ) = L d i d t U ( s ) = L [ L d i d t ] = L s I ( s ) − L I 0 I ( s ) = U ( s ) + L I 0 L s = U ( s ) L s + I 0 s \text{电感}-\text{并联等效电路:} \\ U\left( t \right) =L\frac{di}{dt} \\ U\left( s \right) =\mathscr{L} \left[ L\frac{di}{dt} \right] =LsI\left( s \right) -LI_0 \\ I\left( s \right) =\frac{U\left( s \right) +LI_0}{Ls}=\frac{U\left( s \right)}{Ls}+\frac{I_0}{s} 电感并联等效电路:U(t)=LdtdiU(s)=L[Ldtdi]=LsI(s)LI0I(s)=LsU(s)+LI0=LsU(s)+sI0
    - 对于电容而言,存在初值的电容电压微分的拉普拉斯变换存在等效的常数项。相当于并联了电流源支路。或者相当于串联了电压源。 电容 − 并联等效电路: i ( t ) = c d u c d t I ( s ) = L [ c d u c d t ] = C s U c ( s ) − C U 0 \text{电容}-\text{并联等效电路:} \\ i\left( t \right) =c\frac{du_c}{dt} \\ I\left( s \right) =\mathscr{L} \left[ c\frac{du_c}{dt} \right] =CsU_c\left( s \right) -CU_0 电容并联等效电路:i(t)=cdtducI(s)=L[cdtduc]=CsUc(s)CU0
    电容 − 串联等效电路: i ( t ) = c d u c d t I ( s ) = L [ c d u c d t ] = C s U c ( s ) − C U 0 U c ( s ) = I ( s ) + C U 0 C s = I ( s ) C s + U 0 C \text{电容}-\text{串联等效电路:} \\ i\left( t \right) =c\frac{du_c}{dt} \\ I\left( s \right) =\mathscr{L} \left[ c\frac{du_c}{dt} \right] =CsU_c\left( s \right) -CU_0 \\ U_c\left( s \right) =\frac{I\left( s \right) +CU_0}{Cs}=\frac{I\left( s \right)}{Cs}+\frac{U_0}{C} 电容串联等效电路:i(t)=cdtducI(s)=L[cdtduc]=CsUc(s)CU0Uc(s)=CsI(s)+CU0=CsI(s)+CU0
  • 电路在频率和s域的分析是非常类似的,但是s域可以考虑初值的影响;
  • 在存在初值的电路进行s域分析时,只需注意初值引起的电压电流源引入,基尔霍夫定律依旧有效。
  • 戴维南等效电路在s域分析的应用。计算开路电压,计算短路阻抗;
  • s域下电路基本定理适用的背景使阻抗分析法有了理论基础。
  • s域下可以根据终值和初值进行初步检验。
  • 含有互感的电路,根据同名段进行T型电路等效;或者在时域根据同名段列些电压方程;
  • 传递函数描述零初始情况下,单输入单输出的信号传递关系;完整的响应需要采用叠加定理得到。

第16章 傅里叶级数

dirichlet`s condition:

  1. f(t)是单值函数;
  2. f(t)在一个周期间隔存在有限间断点;
  3. f(t)在一个周期中存在有限的最大最小值;
  4. 绝对可积积分即绝对值的积分为有限值;
    注意,上述为充分条件,当不满足上述条件时,也有可能获得傅里叶级数。
    傅里叶级数对于电路的应用意义,线性系统满足叠加性,因此可以采用正弦叠加作为替代输入,分析原系统的响应,因此将傅里叶级数与正弦稳态分析建立了联系。
    傅里叶级数公式:
    f ( t ) = a 0 + ∑ n = 0 ∞ a n cos ⁡ n ω 0 t + b n sin ⁡ n ω 0 t { a 0 = 1 T ∫ t 0 t 0 + T f ( t ) d t a k = 2 T ∫ t 0 t 0 + T f ( t ) cos ⁡ k ω 0 t d t b k = 2 T ∫ t 0 t 0 + T f ( t ) sin ⁡ k ω 0 t d t f\left( t \right) =a_0+\sum_{n=0}^{\infty}{a_n\cos n\omega _0t+b_n\sin n\omega _0t} \\ \begin{cases} a_0=\frac{1}{T}\int\limits_{t_0}^{t_0+T}{f\left( t \right) dt}\\ a_k=\frac{2}{T}\int\limits_{t_0}^{t_0+T}{f\left( t \right) \cos k\omega _0tdt}\\ b_k=\frac{2}{T}\int\limits_{t_0}^{t_0+T}{f\left( t \right) \sin k\omega _0tdt}\\ \end{cases} f(t)=a0+n=0ancosnω0t+bnsinnω0t a0=T1t0t0+Tf(t)dtak=T2t0t0+Tf(t)coskω0tdtbk=T2t0t0+Tf(t)sinkω0tdt
    傅里叶级数的公式背景:
    1. 积化和差:
      sin ⁡ w t ∗ cos ⁡ w t = 1 2 sin ⁡ ( 2 w t ) sin ⁡ w t ∗ sin ⁡ w t = 1 2 ( 1 − cos ⁡ ( 2 w t ) ) cos ⁡ w t cos ⁡ w t = 1 2 ( cos ⁡ ( 2 w t ) + 1 ) \sin wt*\cos wt=\frac{1}{2}\sin \left( 2wt \right) \\ \sin wt*\sin wt=\frac{1}{2}\left( 1-\cos \left( 2wt \right) \right) \\ \cos wt\cos wt=\frac{1}{2}\left( \cos \left( 2wt \right) +1 \right) sinwtcoswt=21sin(2wt)sinwtsinwt=21(1cos(2wt))coswtcoswt=21(cos(2wt)+1)
      sin ⁡ w t cos ⁡ κ t = 1 2 sin ⁡ ( w t + κ t ) + 1 2 sin ⁡ ( w t − κ t ) \sin wt\cos \kappa t=\frac{1}{2}\sin \left( wt+\kappa t \right) +\frac{1}{2}\sin \left( wt-\kappa t \right) sinwtcosκt=21sin(wt+κt)+21sin(wtκt)
      sin ⁡ w t sin ⁡ κ t = 1 2 cos ⁡ ( w t − κ t ) − 1 2 cos ⁡ ( w t + κ t ) \sin wt\sin \kappa t=\frac{1}{2}\cos \left( wt-\kappa t \right) -\frac{1}{2}\cos \left( wt+\kappa t \right) sinwtsinκt=21cos(wtκt)21cos(wt+κt)
      因此对于不同频率的正弦信号:
      2 T ∫ t 0 t 0 + T sin ⁡ n ω 0 t cos ⁡ k ω 0 t d t = 2 T ∫ t 0 t 0 + T [ 1 2 sin ⁡ ( n ω 0 t + k ω 0 t ) + 1 2 sin ⁡ ( n ω 0 t − k ω 0 t ) ] d t = 2 T ∫ t 0 t 0 + T 1 2 sin ⁡ ( n ω 0 t + k ω 0 t ) d t + 2 T ∫ t 0 t 0 + T 1 2 sin ⁡ ( n ω 0 t − k ω 0 t ) d t ( 由于 n , k 均为整数,因此差值和值均为整数,即原始周期 ω 0 的整数倍 ) 2 T ∫ t 0 t 0 + T sin ⁡ n ω 0 t cos ⁡ k ω 0 t d t = 0 \frac{2}{T}\int\limits_{t_0}^{t_0+T}{\sin n\omega _0t\cos k\omega _0tdt} \\ =\frac{2}{T}\int\limits_{t_0}^{t_0+T}{\left[ \frac{1}{2}\sin \left( n\omega _0t+k\omega _0t \right) +\frac{1}{2}\sin \left( n\omega _0t-k\omega _0t \right) \right]}dt \\ =\frac{2}{T}\int\limits_{t_0}^{t_0+T}{\frac{1}{2}\sin \left( n\omega _0t+k\omega _0t \right)}dt+\frac{2}{T}\int\limits_{t_0}^{t_0+T}{\frac{1}{2}\sin \left( n\omega _0t-k\omega _0t \right)}dt \\ \left( \text{由于}n,k\text{均为整数,因此差值和值均为整数,即原始周期}\omega _0\text{的整数倍} \right) \\ \frac{2}{T}\int\limits_{t_0}^{t_0+T}{\sin n\omega _0t\cos k\omega _0tdt}=0 T2t0t0+Tsinnω0tcoskω0tdt=T2t0t0+T[21sin(nω0t+kω0t)+21sin(nω0tkω0t)]dt=T2t0t0+T21sin(nω0t+kω0t)dt+T2t0t0+T21sin(nω0tkω0t)dt(由于n,k均为整数,因此差值和值均为整数,即原始周期ω0的整数倍)T2t0t0+Tsinnω0tcoskω0tdt=0
      当n,k相等时:
      2 T ∫ t 0 t 0 + T sin ⁡ k ω 0 t cos ⁡ k ω 0 t d t = 2 T ∫ t 0 t 0 + T 1 2 ( 1 − cos ⁡ 2 k ω 0 t ) d t = 1 T ∫ t 0 t 0 + T 1 d t − 1 T ∫ t 0 t 0 + T cos ⁡ 2 k ω 0 t d t = 1 \frac{2}{T}\int\limits_{t_0}^{t_0+T}{\sin k\omega _0t\cos k\omega _0tdt} \\ =\frac{2}{T}\int\limits_{t_0}^{t_0+T}{\frac{1}{2}\left( 1-\cos 2k\omega _0t \right) dt} \\ =\frac{1}{T}\int\limits_{t_0}^{t_0+T}{1dt}-\frac{1}{T}\int\limits_{t_0}^{t_0+T}{\cos 2k\omega _0tdt} \\ =1 T2t0t0+Tsinkω0tcoskω0tdt=T2t0t0+T21(1cos2kω0t)dt=T1t0t0+T1dtT1t0t0+Tcos2kω0tdt=1
      上式计算的1即原始sin分量的幅值。因此傅里叶级数计算的结果为原始信号分量的幅值。

查漏补缺

分部积分法:
∫ u d v = u v − ∫ v d u \int{udv=uv-\int{vdu}} udv=uvvdu
定积分改变上下限需要变号:
∫ − T 2 0 f ( t ) d t = − ∫ 0 − T 2 f ( t ) d t \int\limits_{-\frac{T}{2}}^0{f\left( t \right) dt}=-\int\limits_0^{-\frac{T}{2}}{f\left( t \right) dt} 2T0f(t)dt=02Tf(t)dt

生词

triginometry:三角学
determination:坚定;决定;确定;
convergent:收敛的;
sufficient:充足的,充分的;
necessary:必须的;必然的;
owing to:由于;因为;
respect:尊重;方面;
quantitative:数量的;量化的;
even:偶数的;水平的;
reciprocal:相互的;互惠的;
antilog:逆对数;

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值