最小二乘算法(应用篇)

最小二乘法在电机参数辨识的应用

参考文献:Auto Tuning of Parameters and Magnetization Curve of an Induction Motor at Standstill

生词:

whilst:当什么的时候;
alleviate:减轻,缓和;
converge:汇集;聚集;

应用原理和特点:

最小二乘法的应用可以减小噪声对辨识结果的影响;传统的空载测试和堵转测试往往无法实现。(与负载连接,无法脱离开负载。)辨识过程中需要考虑死区窄脉冲和设备管压降的影响。
转子静止情况下的电机模型:
静止坐标系下的电机模型推导:以 α β 坐标系的电压方程为起点: { ψ s α = L s i s α + L m i r α ψ s β = L s i s β + L m i r β ψ r α = L m i s α + L r i r α ψ s β = L m i s β + L r i r β 电压方程: { u s α = R s i s α + p ψ s α u s β = R s i s β + p ψ s β u r α = R r i r α + p ψ r α + ω r ψ r β u r β = R r i r β + p ψ r β − ω r ψ r α 当电机静止时: ω r = 0 p ψ r α = − R r i r α p ψ r β = − R r i r β ψ s α = L s i s α + L m ψ r α − L m i s α L r = σ L s i s α + L m L r ψ r α ψ s β = σ L s i s β + L m L r ψ r β { u s α = R s i s α + σ L s d i s α d t + L m L r d ψ r α d t u s β = R s i s β + σ L s d i s β d t + L m L r d ψ r β d t 继续推导,消除磁链微分项: { u s α = R s i s α + σ L s d i s α d t + L m L r ( − R r ψ r α − L m i s α L r ) u s β = R s i s β + σ L s d i s β d t + L m L r ( − R r ψ r β − L m i s β L r ) 化简可得: { u s α = ( R s + L m 2 L r 2 R r ) i s α + σ L s d i s α d t − L m R r L r 2 ψ r α u s β = ( R s + L m 2 L r 2 R r ) i s β + σ L s d i s β d t − L m R r L r 2 ψ r β { p ψ r α = − R r L r ψ r α + R r L r L m i s α p ψ r β = − R r L r ψ r β + R r L r L m i s β 写为矢量形式: { u ⃗ s = ( R s + L m 2 L r 2 R r ) i ⃗ s + σ L s d i ⃗ s d t − L m R r L r 2 ψ ⃗ r d ψ ⃗ r d t = R r L r L m i ⃗ s − R r L r ψ ⃗ r \text{静止坐标系下的电机模型推导:}\text{以}\alpha \beta \text{坐标系的电压方程为起点:} \\ \begin{cases} \psi _{s\alpha}=L_si_{s\alpha}+L_mi_{r\alpha}\\ \psi _{s\beta}=L_si_{s\beta}+L_mi_{r\beta}\\ \psi _{r\alpha}=L_mi_{s\alpha}+L_ri_{r\alpha}\\ \psi _{s\beta}=L_mi_{s\beta}+L_ri_{r\beta}\\ \end{cases} \\ \text{电压方程:} \\ \begin{cases} u_{s\alpha}=R_si_{s\alpha}+p\psi _{s\alpha}\\ u_{s\beta}=R_si_{s\beta}+p\psi _{s\beta}\\ u_{r\alpha}=R_ri_{r\alpha}+p\psi _{r\alpha}+\omega _r\psi _{r\beta}\\ u_{r\beta}=R_ri_{r\beta}+p\psi _{r\beta}-\omega _r\psi _{r\alpha}\\ \end{cases} \\ \text{当电机静止时:}\omega _r=0 \\ p\psi _{r\alpha}=-R_ri_{r\alpha} \\ p\psi _{r\beta}=-R_ri_{r\beta} \\ \psi _{s\alpha}=L_si_{s\alpha}+L_m\frac{\psi _{r\alpha}-L_mi_{s\alpha}}{L_r}=\sigma L_si_{s\alpha}+\frac{L_m}{L_r}\psi _{r\alpha} \\ \psi _{s\beta}=\sigma L_si_{s\beta}+\frac{L_m}{L_r}\psi _{r\beta} \\ \begin{cases} u_{s\alpha}=R_si_{s\alpha}+\sigma L_s\frac{di_{s\alpha}}{dt}+\frac{L_m}{L_r}\frac{d\psi _{r\alpha}}{dt}\\ u_{s\beta}=R_si_{s\beta}+\sigma L_s\frac{di_{s\beta}}{dt}+\frac{L_m}{L_r}\frac{d\psi _{r\beta}}{dt}\\ \end{cases} \\ \text{继续推导,消除磁链微分项:} \\ \begin{cases} u_{s\alpha}=R_si_{s\alpha}+\sigma L_s\frac{di_{s\alpha}}{dt}+\frac{L_m}{L_r}\left( -R_r\frac{\psi _{r\alpha}-L_mi_{s\alpha}}{L_r} \right)\\ u_{s\beta}=R_si_{s\beta}+\sigma L_s\frac{di_{s\beta}}{dt}+\frac{L_m}{L_r}\left( -R_r\frac{\psi _{r\beta}-L_mi_{s\beta}}{L_r} \right)\\ \end{cases} \\ \text{化简可得:} \\ \begin{cases} u_{s\alpha}=\left( R_s+\frac{L_{m}^{2}}{L_{r}^{2}}R_r \right) i_{s\alpha}+\sigma L_s\frac{di_{s\alpha}}{dt}-\frac{L_mR_r}{L_{r}^{2}}\psi _{r\alpha}\\ u_{s\beta}=\left( R_s+\frac{L_{m}^{2}}{L_{r}^{2}}R_r \right) i_{s\beta}+\sigma L_s\frac{di_{s\beta}}{dt}-\frac{L_mR_r}{L_{r}^{2}}\psi _{r\beta}\\ \end{cases} \\ \begin{cases} p\psi _{r\alpha}=-\frac{R_r}{L_r}\psi _{r\alpha}+\frac{R_r}{L_r}L_mi_{s\alpha}\\ p\psi _{r\beta}=-\frac{R_r}{L_r}\psi _{r\beta}+\frac{R_r}{L_r}L_mi_{s\beta}\\ \end{cases} \\ \text{写为矢量形式:} \\ \begin{cases} \vec{u}_s=\left( R_s+\frac{L_{m}^{2}}{L_{r}^{2}}R_r \right) \vec{i}_s+\sigma L_s\frac{d\vec{i}_s}{dt}-\frac{L_mR_r}{L_{r}^{2}}\vec{\psi}_r\\ \frac{d\vec{\psi}_r}{dt}=\frac{R_r}{L_r}L_m\vec{i}_s-\frac{R_r}{L_r}\vec{\psi}_r\\ \end{cases} \\ 静止坐标系下的电机模型推导:αβ坐标系的电压方程为起点: ψsα=Lsisα+Lmirαψsβ=Lsisβ+Lmirβψrα=Lmisα+Lrirαψsβ=Lmisβ+Lrirβ电压方程: usα=Rsisα+pψsαusβ=Rsisβ+pψsβurα=Rrirα+pψrα+ωrψrβurβ=Rrirβ+pψrβωrψrα当电机静止时:ωr=0pψrα=Rrirαpψrβ=Rrirβψsα=Lsisα+LmLrψrαLmisα=σLsisα+LrLmψrαψsβ=σLsisβ+LrLmψrβ{usα=Rsisα+σLsdtdisα+LrLmdtdψrαusβ=Rsisβ+σLsdtdisβ+LrLmdtdψrβ继续推导,消除磁链微分项: usα=Rsisα+σLsdtdisα+LrLm(RrLrψrαLmisα)usβ=Rsisβ+σLsdtdisβ+LrLm(RrLrψrβLmisβ)化简可得: usα=(Rs+Lr2Lm2Rr)isα+σLsdtdisαLr2LmRrψrαusβ=(Rs+Lr2Lm2Rr)isβ+σLsdtdisβLr2LmRrψrβ{pψrα=LrRrψrα+LrRrLmisαpψrβ=LrRrψrβ+LrRrLmisβ写为矢量形式: u s=(Rs+Lr2Lm2Rr)i s+σLsdtdi sLr2LmRrψ rdtdψ r=LrRrLmi sLrRrψ r

论文中的公式:
在这里插入图片描述
**有些不太一样?**转子磁链的定义可能不同。
第一步:定子电阻辨识:
采用电压误差和电流误差实现定子电阻辨识的理论依据:
假设给定输出电压为 U r e f ,实际输出电压为 U r e a l , 在定子电阻辨识时,输出电压方程可表示如下: U A r e f − Δ U A e r r = U A r e a l U B r e f − Δ U B e r r = U B r e a l 若进行两相发波,第三相关断,可得: U A r e a l − U B r e a l = 2 ∗ I A R s U A r e f − U B r e f − Δ U A e r r + Δ U B e r r = 2 ∗ I A R s 取另外一组电压电路关系: U A r e f 2 − U B r e f 2 − Δ U A e r r 2 + Δ U B e r r 2 = 2 ∗ I A 2 R s 当 I A 和 I A 2 较大时,如取 1 / 2 I b 和 I b 此时 Δ U A e r r ≈ Δ U A e r r 2 ; Δ U B e r r ≈ Δ U B e r r 2 因此: R s = U A r e f − U B r e f − U A r e f 2 + U B r e f 2 2 ∗ I A 2 − 2 ∗ I A \text{假设给定输出电压为}U_{ref}\text{,实际输出电压为}U_{real}\text{,} \\ \text{在定子电阻辨识时,输出电压方程可表示如下:} \\ U_{Aref}-\varDelta U_{Aerr}=U_{Areal} \\ U_{Bref}-\varDelta U_{Berr}=U_{Breal} \\ \text{若进行两相发波,第三相关断,可得:} \\ U_{Areal}-U_{Breal}=2*I_AR_s \\ U_{Aref}-U_{Bref}-\varDelta U_{Aerr}+\varDelta U_{Berr}=2*I_AR_s \\ \text{取另外一组电压电路关系:} \\ U_{Aref2}-U_{Bref2}-\varDelta U_{Aerr2}+\varDelta U_{Berr2}=2*I_{A2}R_s \\ \text{当}I_A\text{和} I_{A2}\text{较大时,如取}1/2I_b\text{和}I_b \\ \text{此时}\varDelta U_{Aerr}\approx \varDelta U_{Aerr2}\text{;}\varDelta U_{Berr}\approx \varDelta U_{Berr2} \\ \text{因此:} \\ R_s=\frac{U_{Aref}-U_{Bref}-U_{Aref2}+U_{Bref2}}{2*I_{A2}-2*I_A} 假设给定输出电压为Uref,实际输出电压为Ureal在定子电阻辨识时,输出电压方程可表示如下:UArefΔUAerr=UArealUBrefΔUBerr=UBreal若进行两相发波,第三相关断,可得:UArealUBreal=2IARsUArefUBrefΔUAerr+ΔUBerr=2IARs取另外一组电压电路关系:UAref2UBref2ΔUAerr2+ΔUBerr2=2IA2RsIAIA2较大时,如取1/2IbIb此时ΔUAerrΔUAerr2ΔUBerrΔUBerr2因此:Rs=2IA22IAUArefUBrefUAref2+UBref2
第二步: 漏感辨识:脉冲法得到物理模型,最小二乘法实现计算。
由于转子时间常数较大,在脉冲施加过程中,由于转子磁链满足如下关系:
ψ ⃗ r = L m i ⃗ s τ r s + 1 i ⃗ s \vec{\psi}_r=\frac{L_m\vec{i}_s}{\tau _rs+1}\vec{i}_s ψ r=τrs+1Lmi si s
由于转子时间常数远大于漏感时间常数,因此转子磁链可等效为0。定子电压方程可简化如下:
u ⃗ s = ( R s + L m 2 L r 2 R r ) i ⃗ s + σ L s d i ⃗ s d t \vec{u}_s=\left( R_s+\frac{L_{m}^{2}}{L_{r}^{2}}R_r \right) \vec{i}_s+\sigma L_s\frac{d\vec{i}_s}{dt} u s=(Rs+Lr2Lm2Rr)i s+σLsdtdi s
由上式可知:当施加电压脉冲后,电压与电流满足上述的微分方程。
脉冲法辨识漏感现象的matlab仿真验证:
施加10ms脉冲电压的电流响应如下图所示:
SHIJIA
可见输出电流呈指数上升。在实际应用中,采用三相电流发波和两相电流发波都是可以的。
对瞬态电感公式进行离散化:
u s = R s ∗ i s + σ L ^ s i n − i n − 1 T s u_s=R_{s}^{*}i_s+\sigma \hat{L}_s\frac{i_n-i_{n-1}}{T_s} us=Rsis+σL^sTsinin1
采用RLS算法的应用如下:
y ( n ) = u s ( n ) − R s ∗ i s ( n ) c ( n ) = i s ( n ) − i s ( n − 1 ) x ~ ( n ) = σ L ^ s T s y\left( n \right) =u_s\left( n \right) -R_{s}^{*}i_s\left( n \right) \\ c\left( n \right) =i_s\left( n \right) -i_s\left( n-1 \right) \\ \tilde{x}\left( n \right) =\frac{\sigma \hat{L}_s}{T_s} y(n)=us(n)Rsis(n)c(n)=is(n)is(n1)x~(n)=TsσL^s

应用于扩展

后续计划:通过matlab实践三种最小二乘的实现和验证

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值