Waymo-自动驾驶长尾问题挑战(2019)

Waymo在自动驾驶领域面临众多长尾场景挑战,如特殊交通行为理解。文章探讨了Perception、Prediction和Planning核心模块,强调大规模机器学习技术的应用,包括Automated Machine Learning,但也指出机器学习的局限性。Waymo通过大规模测试和仿真模拟来处理低频问题,提出 ChauffeurNet 解决部分问题,但仍存在复杂场景处理难题。智能Agent和专家系统被提为解决长尾问题的关键,以促进自动驾驶技术的规模化发展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

尽管Waymo已经在开放道路上积累超过10 Million Miles,Waymo的工程师们仍然发现有层出不穷的新自动驾驶场景待解决。

1、自动驾驶长尾场景举例

场景一:一个骑自行车的人手中拿着一个Stop Sign标识牌。我们不知道它何时会举起标识牌。无人车必须理解这种场景,即使他举起了Stop Sign标识牌,自动驾驶汽车也不应该停下来。

场景二: 迎面而来的车辆上装载的塑料管子撒了一地,自动驾驶汽车必须学会应对这种突发情况,并且避开它们对无人车行驶的影响。

场景三:由于道路施工等因素,路面布满锥桶。无人车必须正确识别这些场景,在布满路面锥桶的场景下实现合理驾驶。

场景四:路口绿灯,无人车拥有路权,虽然我们的无人车先到达路口,但必须为稍后到达的特种车辆让行。

场景五: 路口绿灯,无人车准备左转,遇到闯红灯高速通过的社会车辆,无人车需要识别这种场景,并及时停车避让违规车辆。

2、自动驾驶核心模块-Perception, Prediction和Planning

Perception、Prediction和Planning模块是自动驾驶的核心模块,每个模块都存在巨大的挑战。

2.1 Perception

Perception输入:传感器(激光雷达)输入信息以及场景的先验信息。

Perception输出:道路交通对象(行人、车辆等),对道路场景的语义分割和理解。

Perception本身是一个非常复杂、高难度的问题,它必须能够识别各种形态各异、不同种类的对象。比如下左一图,一群穿着恐龙服的行人,感知必须能够正确识别它们。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我是刀爷

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值