MIT 线性代数笔记 第五讲:转置,置换和空间

本节引入向量空间和子空间~

置换与转置

置换:

Permutations 记为P,是通过对单位矩阵进行行变换得到的。

前面用消元法解线性方程组时:需要通过左乘一个置换矩阵,通过行交换从主元位置移走。

LU分解:由A=LU变为PA = LU,P就是对A的行向量进行重新排序的置换矩阵。

置换矩阵的特殊性质:P^{-1}=P^{T} and P^{T}P=I

转置:

矩阵A的转置记为A^{T},将矩阵的行变为列,看起来像是沿着对角线进行翻转。(A^{T})_{ij}=A_{ji}

对称矩阵:A^{T}=A

矩阵乘积的转置:

A可以不是方阵,乘积 AA^{T}一定是对称矩阵:(AA^{T})^{T}=(A^{T})^{T}A^{T}=AA^{T}

向量空间 Vector Spaces:

线性运算:加(v+w);数乘(3v)

向量空间:对线性运算封闭,及空间内向量经过线性运算所得向量均在该空间内。

R^{2}:包含所有二维实数分量的空间。二维向量空间覆盖整个x-y平面。所有向量空间必须包含0向量。

R^{3}:包含所有三维实数分量的空间。R^{n}:包含所有n维实数分量的空间。

反例:第一象限不是向量空间

子空间 Subspaces:

包含于向量空间内的一个向量空间称为原向量空间的一个子空间。表现为一条过原点的直线,不过原点的不是子空间,因为子空间必须包含零向量。即数乘原向量空间中一个向量v所得所有向量的集合称作原向量空间R^{2}的一个子空间。

R^{2}的子空间包括:

R^{2}自己本身; 过原点的两端无限延伸的一条直线;原点 仅包括0向量Z

R^{3}的子空间包括:

R^{3}自己本身;过原点的一个二维平面;过原点的一条直线 一维;原点 仅包括0向量Z

列空间 Column spaces:

给定一个矩阵A,其中的列向量均属于R^{3}空间,这些列向量的线性组合构成了R^{3}空间中的一个字空间,矩阵A三维列空间记为C(A).

下面的几讲将在列空间和子空间的基础上理解线性方程组的求解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值