国科大高级人工智能5-RNN/LSTM/GRU/集束搜索/attention

  • 序列数据建模
    • 输入序列–>输出序列
    • 预测序列的下一项(监督)
      • 模糊了监督和非监督
  • 有的cnn对序列不适用:
    • cnn假设:离得远的关系远,有关系的都在附近
    • 序列:可能长距离也有相关的(一段文字的代词)
      RNN结构
  • RNN
    • 结构:
      • 层间全连接
      • 层内全连接?
      • 自连接
    • 功能强大
      • 计算力够且单元数够的情况下
    • 每个时间点的输入输出不同–
      • 参数共享:一个序列的从前到后逐个输入到网络中(矩阵)(每个时间点不同的字进的都是同一个神经元–参数一样的)
      • 矩阵:行(时间,一行一个字的表达),列(神经元数目)
    • 特点(展开后的(可认为是:
      • 权值约束(共享
      • 多层
      • 前向网络
    • 损失函数:
      • 平方损失
      • 交叉熵
    • 训练:采用权值一致的BP算法(更新也一致
      • BP容易实现权值的线性约束
        • 约 束 w 1 = w 2 , 令 Δ w 1 = Δ w 2 = ∂ E ∂ w 1 + ∂ E ∂ w 2 约束w^1=w^2,令\Delta w^1=\Delta w^2=\frac{\partial E}{\partial w^1}+\frac{\partial E}{\partial w^2} w1=w2,Δw1=Δw2=w1E+w2E
      • BPTT(时间域上的BP
        1. 前向
          • 输入层:(常用tanh a t = g 1 ( W a a a t − 1 + W a x x t + b a ) = g 1 ( W a [ a t − 1 , x t ] + b a ) , z a t = W a a a t − 1 + W a x x t + b a a^t=g_1(W_{aa}a^{t-1}+W_{ax}x^t+b_a)=g_1(W_a[a^{t-1},x^t]+b_a),z_a^t=W_{aa}a^{t-1}+W_{ax}x^t+b_a at=g1(Waaat1+Waxxt+ba)=g1(Wa[at1,xt]+ba),zat=Waaat1+Waxxt+ba
          • 输出层:(softmax y ^ t = g 2 ( W y a a t + b y ) , z y t = W y a a t + b y \hat{y}^t=g_2(W_{ya}a^{t}+b_y),z_y^t=W_{ya}a^{t}+b_y y^t=g2(Wyaat+by),zyt=Wyaat+by
        2. 计算每一个时间的链式导数 ∂ E ∂ w i \frac{\partial E}{\partial w^i} wiE
          • Δ W = − η ∂ L ∂ W , η 学 习 率 \Delta W=-\eta \frac{\partial L}{\partial W}, \eta学习率 ΔW=ηWL,η
          • δ t = ∂ L ∂ z t \delta^t=\frac{\partial L}{\partial z^t} δt=ztL
          • ∂ L t ∂ W y a = ∂ L t ∂ y ^ t ∂ y ^ t ∂ z y t ∂ z y t ∂ W y a = ∂ L t ∂ y ^ t g 2 ′ ( z y t ) a t = δ y t a t \frac{\partial L^t}{\partial W_ya}=\frac{\partial L^t}{\partial \hat{y}^t}\frac{\partial \hat{y}^t}{\partial z_y^t}\frac{\partial z_y^t}{\partial W_ya}=\frac{\partial L^t}{\partial \hat{y}^t}g_2'(z_y^t)a^t=\delta_y^ta^t WyaLt=y^tLtzyty^tWyazyt=y^tLtg2(zyt)at=δytat
          • δ a t = g 1 ′ ( z a t ) ( W y a T δ y t + W a a ′ T δ a ′ t + 1 ) \delta_a^t=g_1'(z_a^t)(W_{ya}^T\delta_y^t+W_{aa'}^T\delta_{a'}^{t+1}) δat=g1(zat)(WyaTδyt+WaaTδat+1)
            • 前一项: W y a T δ y t : 当 前 层 的 y 传 来 的 W_{ya}^T\delta_y^t:当前层的y传来的 WyaTδyt:y
            • 后一项: W a a ′ T δ a ′ t + 1 : 其 他 隐 层 ( 上 一 时 刻 的 ) 传 递 而 来 的 W_{aa'}^T\delta_{a'}^{t+1}:其他隐层(上一时刻的)传递而来的 WaaTδat+1:
        3. 将所有时间的导数加在一起 约 束 w 1 = w 2 , 令 Δ w 1 = Δ w 2 = ∂ E ∂ w 1 + ∂ E ∂ w 2 约束w^1=w^2,令\Delta w^1=\Delta w^2=\frac{\partial E}{\partial w^1}+\frac{\partial E}{\partial w^2} w1=w2,Δw1=Δw2=w1E+w2E
          • ∂ L t ∂ W y a = Σ t = 1 T y δ y t a t \frac{\partial L^t}{\partial W_ya}=\Sigma_{t=1}^{T_y}\delta_y^ta^t WyaLt=Σt=1Tyδytat
          • ∂ L t ∂ W a a = Σ t = 1 T x δ a t a t \frac{\partial L^t}{\partial W_aa}=\Sigma_{t=1}^{T_x}\delta_a^ta^t WaaLt=Σt=1Txδatat
          • ∂ L t ∂ W y a = Σ t = 1 T x δ a t x t \frac{\partial L^t}{\partial W_ya}=\Sigma_{t=1}^{T_x}\delta_a^tx^t WyaLt=Σt=1Txδatxt
          • 这里的x、y、W都是向量、矩阵,可以视作一个向量中一个元素一个神经元
      • 交叉熵loss:
        • L t ( y ^ t , y t ) = − y t l o g ( y ^ t ) − ( 1 − y t ) l o g ( 1 − y ^ t ) L^t(\hat{y}^t,y^t)=-y^tlog(\hat{y}^t)-(1-y^t)log(1-\hat{y}^t) Lt(y^t,yt)=ytlog(y^t)(1yt)log(1y^t)
        • 用 这 个 损 失 函 数 : L ( y ^ , y ) = Σ t = 1 T y L t ( y ^ t , y t ) 用这个损失函数:L(\hat{y},y)=\Sigma_{t=1}^{T_y}L^t(\hat{y}^t,y^t) L(y^,y)=Σt=1TyLt(y^t,yt)
    • 结构
      • 多对多1
      • 多对多2(encoder+decoder)
        • 机器翻译
      • 多对1
        • 情感分析
      • 1对多
      • 一对一
  • 语言模型(多对多1)
    • 计算P(sentence),大的好= P ( y 1 , y 2 , . . . , y n ) = P ( c a t s 在 开 头 ) P ( a v e r a g e ∣ c a t s ) P ( 15 ∣ a v e r a g e , c a t s ) P(y^1,y^2,...,y^n)=P(cats在开头)P(average|cats) P(15|average,cats) P(y1,y2,...,yn)=P(cats)P(averagecats)P(15average,cats)
      • RNN的每个时刻的输出y^1==第一个单词在开头的概率 P ( c a t s 在 开 头 ) P(cats在开头) P(cats)
      • 第二个词的输出:给定第一个词,第二个词出现的概率 P ( a v e r a g e ∣ c a t s ) P(average|cats) P(averagecats)
      • 第三个的输出:给定前两个词,第三个词出现的概率 P ( 15 ∣ a v e r a g e , c a t s ) P(15|average,cats) P(15average,cats)
    • 标记
      • 句子结尾:/< E O S/>
      • 不名词:/< U N K />
    • 采样可以知道学到了什么)
    • 也可以在字符级别建立语言模型–
      • 不会有UNK,但序列很长很长(会梯度下降,计算要求大)
      • 会用在专业词陌生词多的i情况下
    • 不同语料可以训练出不同的文风

在这里插入图片描述

BPTT

BPTT前向传播

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

  • 1对多模型–序列生成任务
    在这里插入图片描述
    在这里插入图片描述

长序列循环神经网络

  • BP的困难–回传是线性的
    • error双倍,则回传的错误也是双倍的–>梯度爆炸或消失
      • δ a t = g 1 ′ ( z a t ) ( W y a T δ y t + W a a ′ T δ a ′ t + 1 ) , 忽 略 第 一 项 , 看 第 二 项 可 以 知 道 是 线 性 的 \delta_a^t=g_1'(z_a^t)(W_{ya}^T\delta_y^t+W_{aa'}^T\delta_{a'}^{t+1}),忽略第一项,看第二项可以知道是线性的 δat=g1(zat)(WyaTδyt+WaaTδat+1)线
    • 梯度膨胀(容易发现:
      • (梯度修剪)限制梯度(好解决点
    • 梯度消失(难以发现难以处理–GRU可以解决
  • GRU单元
    • 为了保留远时刻的信息
    • 门限循环单元
    • RNN的:
      • 输入层:(常用tanh a t = g 1 ( W a a a t − 1 + W a x x t + b a ) = g 1 ( W a [ a t − 1 , x t ] + b a ) , z a t = W a a a t − 1 + W a x x t + b a a^t=g_1(W_{aa}a^{t-1}+W_{ax}x^t+b_a)=g_1(W_a[a^{t-1},x^t]+b_a),z_a^t=W_{aa}a^{t-1}+W_{ax}x^t+b_a at=g1(Waaat1+Waxxt+ba)=g1(Wa[at1,xt]+ba),zat=Waaat1+Waxxt+ba
      • 输出层:(softmax y ^ t = g 2 ( W y a a t + b y ) , z y t = W y a a t + b y \hat{y}^t=g_2(W_{ya}a^{t}+b_y),z_y^t=W_{ya}a^{t}+b_y y^t=g2(Wyaat+by),zyt=Wyaat+by
    • GRU(简单版本):
      • c t = a t c^t=a^t ct=at
      • 输 入 : c ~ t = t a n h ( W c [ c t − 1 , x t ] + b c ) 输入:\tilde{c}^t=tanh(W_c[c^{t-1},x^t]+b_c) c~t=tanh(Wc[ct1,xt]+bc)–和RNN的输入一样
      • 激 活 门 / 更 新 门 : Γ u = σ ( W u [ c t − 1 , x t ] + b u ) 激活门/更新门:\Gamma_u=\sigma(W_u[c^{t-1},x^t]+b_u) /Γu=σ(Wu[ct1,xt]+bu)–sigmoid–0/1
      • c t = Γ u ∗ c ~ t + ( 1 − Γ u ) ∗ c t − 1 , Γ u = 1 , 更 新 并 遗 忘 过 去 c^t=\Gamma_u*\tilde{c}^t+(1-\Gamma_u)*c^{t-1},\Gamma_u=1,更新并遗忘过去 ct=Γuc~t+(1Γu)ct1Γu=1–决定遗忘还是记住过去
    • GRU(完全):
      • c t = a t c^t=a^t ct=at
      • 输 入 : c ~ t = t a n h ( W c [ Γ r ∗ c t − 1 , x t ] + b c ) , 输入:\tilde{c}^t=tanh(W_c[\Gamma_r*c^{t-1},x^t]+b_c), c~t=tanh(Wc[Γrct1,xt]+bc),–和RNN的输入一样
      • 输 入 门 : Γ r = σ ( W r [ c t − 1 , x t ] + b r ) 输入门:\Gamma_r=\sigma(W_r[c^{t-1},x^t]+b_r) Γr=σ(Wr[ct1,xt]+br)–sigmoid–0/1,备选状态和前一时刻状态是否相关
      • 激 活 门 / 更 新 门 : Γ u = σ ( W u [ c t − 1 , x t ] + b u ) 激活门/更新门:\Gamma_u=\sigma(W_u[c^{t-1},x^t]+b_u) /Γu=σ(Wu[ct1,xt]+bu)–sigmoid–0/1
      • c t = Γ u ∗ c ~ t + ( 1 − Γ u ) ∗ c t − 1 , Γ u = 1 , 更 新 并 遗 忘 过 去 c^t=\Gamma_u*\tilde{c}^t+(1-\Gamma_u)*c^{t-1},\Gamma_u=1,更新并遗忘过去 ct=Γuc~t+(1Γu)ct1Γu=1–决定遗忘还是记住过去
    • 有两个门,比LSTM更快、可以扩大模型的规模
  • LSTM长短时记忆
    • 利用逻辑和线性运算来求乘法?
    • BPTT训练
      • 前向
        • 写门(输入门)
          • a L t = W L T x t + W L T b t − 1 + W L T s t − 1 , b 是 输 出 , x 是 输 入 , s 是 状 态 ( 隐 层 ) a^t_L=W_{L}^Tx^t+W_{L}^Tb^{t-1}+W_{L}^Ts^{t-1},b是输出,x是输入,s是状态(隐层) aLt=WLTxt+WLTbt1+WLTst1,bxs
          • b L t = f ( a L t ) b^t_L=f(a^t_L) bLt=f(aLt)
        • 遗忘门
          • a ϕ t = W ϕ T x t + W ϕ T b t − 1 + W ϕ T s t − 1 , b 是 输 出 , x 是 输 入 , s 是 状 态 ( 隐 层 ) a^t_\phi=W_{\phi}^Tx^t+W_{\phi}^Tb^{t-1}+W_{\phi}^Ts^{t-1},b是输出,x是输入,s是状态(隐层) aϕt=WϕTxt+WϕTbt1+WϕTst1,bxs
          • b ϕ t = f ( a ϕ t ) b^t_\phi=f(a^t_\phi) bϕt=f(aϕt)
        • cell
          • a C t = W C T x t + W C T b t − 1 , b 是 输 出 , x 是 输 入 , s 是 状 态 ( 隐 层 ) a^t_C=W_{C}^Tx^t+W_{C}^Tb^{t-1},b是输出,x是输入,s是状态(隐层) aCt=WCTxt+WCTbt1,bxs
          • s C t = b ϕ t s C t − 1 + b L t g ( a C t ) s_C^t=b^t_\phi s_C^{t-1}+b_L^tg(a_C^t) sCt=bϕtsCt1+bLtg(aCt)
        • 读门(输出门)
          • a ω t = W ω T x t + W ω T b t − 1 + W ω T s t − 1 , b 是 输 出 , x 是 输 入 , s 是 状 态 ( 隐 层 ) a^t_\omega=W_{\omega}^Tx^t+W_{\omega}^Tb^{t-1}+W_{\omega}^Ts^{t-1},b是输出,x是输入,s是状态(隐层) aωt=WωTxt+WωTbt1+WωTst1,bxs
          • b ω t = f ( a ω t ) b^t_\omega=f(a^t_\omega) bωt=f(aωt)
    • 和GRU比:更强大和灵活,有三个门
  • 双向RNN
    • 上下文都用上
  • 深层RNN

在这里插入图片描述

在这里插入图片描述

LSTM

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

序列到序列的模型

(many to many
在这里插入图片描述
GRU或者LSTM/RNN都可以
采样可能得到多个句子,选择可能性最大的那个

在这里插入图片描述
单词表很大,词很多,每一个句子的获得都要搜索很多单词,都产生也不划算
以BFS/DFS搜索效果都不大好—》集束搜索
贪婪搜索会受到常用词影响而不一定是最好的

集束搜索——近似搜索

  1. 利用 P ( y 1 ∣ x ) P(y^1|x) P(y1x)找到最可能的三个单词(集束宽度B=3)
  2. 对这三个单词再看第二个单词有没有合适的
    • 对每个单词分别计算 P ( y 1 , y 2 ∣ x ) = P ( y 1 ∣ x ) P ( y 2 ∣ y 1 , x ) , P ( y 2 ∣ y 1 , x ) 是 神 经 网 络 计 算 出 来 的 P(y^1,y^2|x)=P(y^1|x)P(y^2|y^1,x),P(y^2|y^1,x)是神经网络计算出来的 P(y1,y2x)=P(y1x)P(y2y1,x),P(y2y1,x),单词表,10000,这里有30000个组合,再从这里挑出三个最大的组合
  3. 重复2

* 集束搜索宽度B=1:退化到贪婪搜索

  • B = ∞ B=\infty B=:穷举、宽度优先搜索BFS
  • 实际应用中:B=10或者50
    在这里插入图片描述

改进的集束搜索

  • 长度归一化
    • 以前的: P ( y 1 , y 2 , . . . , y T y ∣ x ) = P ( y 1 ∣ x ) P ( y 2 ∣ y 1 , x ) . . . P ( y T y ∣ y 1 , y 2 , . . . , y T x − 1 , x ) = Π t = 1 T y P ( y t ∣ y 1 , y 2 , . . . , y t − 1 , x ) P(y^1,y^2,...,y^{T_y}|x)=P(y^1|x)P(y^2|y^1,x)...P(y^{T_y}|y^1,y^2,...,y^{T_x-1},x)=\Pi_{t=1}^{T_y} P(y^{t}|y^1,y^2,...,y^{t-1},x) P(y1,y2,...,yTyx)=P(y1x)P(y2y1,x)...P(yTyy1,y2,...,yTx1,x)=Πt=1TyP(yty1,y2,...,yt1,x)
      • a r g m a x y Π t = 1 T y P ( y t ∣ y 1 , y 2 , . . . , y t − 1 , x ) = a r g m a x y P ( y 1 , y 2 , . . . , y T y ∣ x ) argmax_y \Pi_{t=1}^{T_y} P(y^{t}|y^1,y^2,...,y^{t-1},x) =argmax_y P(y^1,y^2,...,y^{T_y}|x) argmaxyΠt=1TyP(yty1,y2,...,yt1,x)=argmaxyP(y1,y2,...,yTyx)
      • 乘积导致越来越小
    • 解决:log
      • a r g m a x y Σ t = 1 T y l o g P ( y t ∣ y 1 , y 2 , . . . , y t − 1 , x ) argmax_y \Sigma_{t=1}^{T_y} log P(y^{t}|y^1,y^2,...,y^{t-1},x) argmaxyΣt=1TylogP(yty1,y2,...,yt1,x)
        • 是负数,所以以乘积或者求和得到的结果,序列越长则数值越小—趋向于选择短序列
      • 所以要归一化: a r g m a x y 1 T y α Σ t = 1 T y P ( y t ∣ y 1 , y 2 , . . . , y t − 1 , x ) argmax_y \frac{1}{T_y^\alpha}\Sigma_{t=1}^{T_y} P(y^{t}|y^1,y^2,...,y^{t-1},x) argmaxyTyα1Σt=1TyP(yty1,y2,...,yt1,x)
  • 目标函数:归一化的对数似然函数
    • a r g m a x y 1 T y α Σ t = 1 T y P ( y t ∣ y 1 , y 2 , . . . , y t − 1 , x ) argmax_y \frac{1}{T_y^\alpha}\Sigma_{t=1}^{T_y} P(y^{t}|y^1,y^2,...,y^{t-1},x) argmaxyTyα1Σt=1TyP(yty1,y2,...,yt1,x)

集束搜索的误差分析

  • y ∗ − − 人 的 选 择 ( 最 优 , y ^ − − 算 法 的 选 择 y^*--人的选择(最优,\hat{y}--算法的选择 yy^
  • P ( y ∗ ∣ x ) > P ( ( ^ y ) ∣ x ) P(y^*|x)>P(\hat(y)|x) P(yx)>P((^y)x):集束搜索错误了(因为他选的应该是概率最大的
    • 解决:增加B
  • P ( y ∗ ∣ x ) < = P ( ( ^ y ) ∣ x ) , y ∗ 最 优 , 但 却 预 测 的 小 , R N N 有 问 题 , P ( y ∗ ∣ x ) < P ( ( ^ y ) ∣ x ) P(y^*|x)<=P(\hat(y)|x) ,y^*最优,但却预测的小,RNN有问题,P(y^*|x)<P(\hat(y)|x) P(yx)<=P((^y)x)yRNNP(yx)<P((^y)x)

–>以上结果是多个句子结果比较之后才能判别到底是RNN还是集束搜索的问题

图到文本

一到多
x是图的特征表示
在这里插入图片描述

注意力模型

  • 对长序列的问题(句子长或短性能都会变差)
    • 长序列不好记忆
    • 每次只考虑一部分,看一部分翻译一部分
  • 结构
    • 输入:低层仍是原来的双向RNN,但是输出层不要了(不直接产生输出),只保留隐层输出的向量(表示)
    • 输出,换成了另一个RNN
    • 产生系数的小神经网络也加进去
    • –》一起训练(BP)

在这里插入图片描述
每个c是所有低层输出的线性组合(并非只有图中的三个)

  • c 1 = Σ t ′ α < 1 , t ′ > a < t ′ > , Σ t ′ α < 1 , t ′ > = 1 , a 是 低 层 的 隐 藏 层 的 输 出 c^1=\Sigma_{t'}\alpha^{<1,t'>}a^{<t'>},\Sigma_{t'}\alpha^{<1,t'>}=1,a是低层的隐藏层的输出 c1=Σtα<1,t>a<t>,Σtα<1,t>=1,a
  • α < t , t ′ > = s o f t m a x ( e t , t ′ ) = e x p ( e < t , t ′ > ) Σ t ′ = 1 T x e x p ( e < t , t ′ > \alpha^{<t,t'>}=softmax(e^{t,t'})=\frac{exp(e^{<t,t'>}) }{\Sigma_{t'=1}^{T_x}exp(e^{<t,t'>}} α<t,t>=softmax(et,t)=Σt=1Txexp(e<t,t>exp(e<t,t>)—保证和为1
  • e < t , t ′ > = g ( s t − 1 , a t ) e^{<t,t'>}=g(s^{t-1},a^t) e<t,t>=g(st1,at)–用一个小的神经网络产生
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值