1. 离散时间鞅(速览)

1. 离散时间鞅(速览)

前情提要

  1. 鞅的定义及例子
  2. Doob下鞅分解:下鞅=鞅+可料增过程
  3. 鞅与停时(Doob停止定理,鞅的离散停时序列是鞅 → \rightarrow 鞅有关停时的等价命题)
  4. 鞅的矩估计
  • 下鞅极值的终值控制不等式(Doob极大值不等式)
  • 平方变差过程(平方变差过程的性质【 M 2 − [ M ] M^2-[M] M2[M]是鞅】、鞅与其平方变差的范数(【能量等式】、【BDG不等式】)、鞅变换的平方变差)
  1. 鞅的收敛定理(下鞅收敛定理【几乎必然收敛】、鞅收敛定理【 L 1 L^1 L1收敛】)

1. 鞅的定义

  • 适应过程与可料过程
  • 鞅的定义:实值可积、适应、鞅性

  • 举例



    此处 Y n Y_n Yn称为鞅变换。

2. Doob分解:下鞅=鞅+可料增过程

  • Doob分解:下鞅=鞅+可料增过程

  • Doob分解得到的增过程必须要求可料,否则分解不唯一。而对于连续样本轨道的连续时间鞅是唯一的。

3. 鞅与停时(Doob停止定理)

3.1 停止过程

  • 停时的定义

  • 停止过程的定义
  • 定理3.3.2(Doob停止定理):鞅的停止过程是鞅

3.2 停止 σ \sigma σ代数

  • 停止 σ \sigma σ代数的定义
  • 停止 σ \sigma σ代数的性质:在 { τ = n } \{\tau=n\} {τ=n}时, F τ \mathscr{F}_\tau Fτ可视为 F n \mathscr{F}_n Fn

3.3 停止过程与停止 σ \sigma σ代数

  • 定理3.3.5(Doob停止定理等价命题):鞅的停止过程是鞅

  • 定理3.3.8:鞅的离散停时序列是鞅


  • 定理3.3.8的推论(鞅有关停时的等价命题):这一定理的特殊情况是: 考虑两个有界停时 τ ≤ σ \tau \leq \sigma τσ, 则 E [ ξ σ ∣ F τ ] = ( ≤ , ≥ ) ξ τ E\left[\xi_{\sigma} \mid \mathscr{F}_{\tau}\right]=(\leq, \geq) \xi_{\tau} E[ξσFτ]=(,)ξτ, 因此更有
    E [ ξ σ ] = ( ≤ , ≥ ) E [ ξ τ ] E\left[\xi_{\sigma}\right]=(\leq, \geq) E\left[\xi_{\tau}\right] E[ξσ]=(,)E[ξτ]

4. 下鞅极值的终值控制不等式(Doob极大值不等式)

  • Kolmogorov-Doob不等式
  • Doob极大值不等式

5. 平方变差过程(鞅与其平方变差的范数)

  • 平方可积鞅
  • 平方变差过程(定义以及性质【鞅的平方-平方变差过程=鞅】)

5.1 鞅&平方变差 范数

  1. 2范数(能量等式):鞅以及其平方变差的 L 2 L^2 L2范数相同

    证明:由下鞅的Doob分解 M n 2 = 2 ∑ k = 1 n M k − 1 ( M k − M k − 1 ) + [ M ] n M_{n}^{2}=2 \sum_{k=1}^{n} M_{k-1}\left(M_{k}-M_{k-1}\right)+[M]_{n} Mn2=2k=1nMk1(MkMk1)+[M]n可得。
  2. p范数(BDG不等式)
    • 常数 C p C_p Cp的具体值:
    • BDG不等式的推论:

  1. p范数(d维鞅的BDG不等式) Khintchine不等式的推论

5.2 鞅变换的平方变差

  • 鞅变换的定义
  • 定理3.4.9 鞅变换的平方变差

6. 鞅的收敛定理

6.1 下鞅收敛定理(几乎必然)

Cauchy准则的内涵: 一个数列收敛的条件是它的项越来越靠近。即它的振幅越来越小:对任意预先给定的数, 振幅超过这个数的项只有有限对.

对任意 a < b a < b a<b, 令 n 1 : = inf ⁡ { n : λ n ≤ a } , m 1 : = inf ⁡ { n > n 1 : λ n ≥ n_{1}:=\inf \left\{n: \lambda_{n} \leq a\right\}, m_{1}:=\inf \left\{n>n_{1}: \lambda_{n} \geq\right. n1:=inf{n:λna},m1:=inf{n>n1:λn b } , ⋯   , n k : = inf ⁡ { n > m k − 1 : λ n ≤ a } , m k : = inf ⁡ { n > n k : λ n ≥ b } , ⋯ b\}, \cdots, n_{k}:=\inf \left\{n>m_{k-1}: \lambda_{n} \leq a\right\}, m_{k}:=\inf \left\{n>n_{k}: \lambda_{n} \geq b\right\}, \cdots b},,nk:=inf{n>mk1:λna},mk:=inf{n>nk:λnb},. 将 平面上的点 ( n 1 , λ n 1 ) \left(n_{1}, \lambda_{n_{1}}\right) (n1,λn1) ( m 1 , λ m 1 ) \left(m_{1}, \lambda_{m_{1}}\right) (m1,λm1) 用直线连接, ⋯   , ( n k , λ n k ) \cdots,\left(n_{k}, \lambda_{n_{k}}\right) ,(nk,λnk) ( m k , λ m k ) \left(m_{k}, \lambda_{m_{k}}\right) (mk,λmk) 用直线连接, 则每一条这样的直线都从下到上穿越区间 ( a , b ) (a, b) (a,b)。把这些直线的总条数称为 ( λ n ) \left(\lambda_{n}\right) (λn) ( a , b ) (a, b) (a,b)上穿数.

Cauchy准则: ( λ n ) \left(\lambda_{n}\right) (λn) 收敛(允许收敛到无穷大)的充分必要条件是它对任意区间的上穿数都是有限的.

  • 下鞅的Doob上穿不等式
    ( ξ n ) , n = 0 , 1 , ⋯   , N \left(\xi_{n}\right), n=0,1, \cdots, N (ξn),n=0,1,,N, 是下鞅, a < b a < b a<b. 令
    τ 1 : = inf ⁡ { n : ξ n ≤ a } σ 1 : = inf ⁡ { n > τ 1 : ξ n ≥ b } ⋯ τ k : = inf ⁡ { n > σ k − 1 : ξ n ≤ a } σ k : = inf ⁡ { n > τ k : ξ n ≥ b } ⋯ \begin{gathered} \tau_{1}:=\inf \left\{n: \xi_{n} \leq a\right\} \\ \sigma_{1}:=\inf \left\{n>\tau_{1}: \xi_{n} \geq b\right\} \\ \cdots \\ \tau_{k}:=\inf \left\{n>\sigma_{k-1}: \xi_{n} \leq a\right\} \\ \sigma_{k}:=\inf \left\{n>\tau_{k}: \xi_{n} \geq b\right\} \\ \cdots \end{gathered} τ1:=inf{n:ξna}σ1:=inf{n>τ1:ξnb}τk:=inf{n>σk1:ξna}σk:=inf{n>τk:ξnb}
    ( inf ⁡ { ∅ } = N ) (\inf \{\emptyset\}=N) (inf{}=N). 再令 β ( a , b ) \beta(a, b) β(a,b) 表示 ( ξ n ) \left(\xi_{n}\right) (ξn) ( a , b ) (a, b) (a,b) 的上穿数. 则有

    现在考虑无限项的下鞅 ( ξ n , F n ) , n = 0 , 1 , 2 , ⋯ \left(\xi_{n}, \mathscr{F}_{n}\right), n=0,1,2, \cdots (ξn,Fn),n=0,1,2, 。 以 ( a , b ) (a, b) (a,b) 表示整个序列上 穿 ( a , b ) (a, b) (a,b) 的次数而以 β N ( a , b ) \beta_{N}(a, b) βN(a,b) 表示前 N N N 项上穿 ( a , b ) (a, b) (a,b) 的次数. 则
    β N ( a , b ) ↑ β ( a , b ) . \beta_{N}(a, b) \uparrow \beta(a, b) . βN(a,b)β(a,b).
    于是由上一定理和Fatou引理得到
  • 下鞅收敛定理:下鞅 sup ⁡ n E [ ∣ ξ n ∣ ] < ∞ \sup _{n} E\left[\left|\xi_{n}\right|\right]<\infty supnE[ξn]<,则几乎必然收敛且极限可积

6.2 鞅收敛定理( L 1 L^1 L1收敛)

ξ ∞ : = l i m n E [ ξ ∣ F n ] \xi_{\infty}:=lim_nE[\xi|\mathscr{F}_n] ξ:=limnE[ξFn]

ξ \xi ξ 为可积随机变量, { F n } \left\{\mathscr{F}_{n}\right\} {Fn} σ \sigma σ 代数流, 则 ξ n : = E [ ξ ∣ F n ] \xi_{n}:=E\left[\xi \mid \mathscr{F}_{n}\right] ξn:=E[ξFn]为鞅且一致可积(见测度与概率教程P133), 故更有 sup ⁡ n E [ ∣ ξ n ∣ ] < ∞ \sup _{n} E\left[\left|\xi_{n}\right|\right]<\infty supnE[ξn]<. 这样首先由上一定理得到 ξ ∞ : = lim ⁡ n → ∞ ξ n \xi_{\infty}:=\lim _{n \rightarrow \infty} \xi_{n} ξ:=limnξn 几乎必然存在, 然后由一致可积性知道 lim ⁡ n → ∞ E [ ∣ ξ n − ξ ∞ ∣ ] = 0 \lim _{n \rightarrow \infty} E\left[\left|\xi_{n}-\xi_{\infty}\right|\right]=0 limnE[ξnξ]=0. (几乎处处收敛且 L 1 L^1 L1收敛)

  1. E [ ξ ∣ F n ] E[\xi|\mathscr{F}_n] E[ξFn]是鞅且一致可积;
  2. 一致可积鞅极限 ξ ∞ \xi_{\infty} ξ存在(几乎处处且 L 1 L^1 L1收敛);
  3. ξ ∞ \xi_{\infty} ξ ξ \xi ξ 是什么关系?
    ξ ∞ : = l i m n E [ ξ ∣ F n ] \xi_{\infty}:=lim_nE[\xi|\mathscr{F}_n] ξ:=limnE[ξFn]= E [ ξ ∣ F ∞ ] E[\xi|\mathscr{F}_\infty] E[ξF]

  1. ξ n \xi_n ξn是鞅,则一致可积<->存在 ξ ∞ \xi_\infty ξ,使得 ξ n = E [ ξ ∞ ∣ F n ] \xi_n=E[\xi_\infty|\mathscr{F}_n] ξn=E[ξFn]
  2. 一致可积鞅极限 ξ ∞ \xi_{\infty} ξ存在(几乎必然且 L 1 L^1 L1收敛);
  3. ξ n \xi_n ξn是鞅,且存在 ξ ∞ \xi_\infty ξ,使得 ξ n = E [ ξ ∞ ∣ F n ] \xi_n=E[\xi_\infty|\mathscr{F}_n] ξn=E[ξFn] ξ n \xi_n ξn几乎必然且 L 1 L^1 L1收敛于 ξ ∞ \xi_{\infty} ξ

注释:由6.1节可得 sup ⁡ n E [ ∣ ξ n ∣ ] < ∞ \sup _{n} E\left[\left|\xi_{n}\right|\right]<\infty supnE[ξn]<, 永远会存在一个 ξ ∞ \xi_{\infty} ξ 使得 ξ n → ξ ∞ \xi_{n} \rightarrow \xi_{\infty} ξnξ a.s… 但与此同时有没有 ∥ ξ n − ξ ∞ ∥ 1 → 0 \left\|\xi_{n}-\xi_{\infty}\right\|_{1} \rightarrow 0 ξnξ10 则要看 ξ ∞ \xi_{\infty} ξ 是否是该鞅的终端值, 而这又要看它是否一致可积.

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小行星-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值