离散鞅论3 | 鞅论应用

3.11 鞅论的应用

栗子 1:三人赌博,每一轮从中随机依次选出两个人,第一个被选中的人给第二个一枚硬币。如果其中一个人没有硬币,其余两人继续赌博,直到其中一个人赢得所有硬币。假设三个人被选中概率完全相等,且每次选择相互独立。如果最初三人拥有的硬币数分别为 a , b , c a,b,c a,b,c,求此游戏结束的平均时间。

:设三个人在第 n n n 次赌博之后拥有的硬币分别为 X n , Y n , Z n X_n,Y_n,Z_n Xn,Yn,Zn,记 S n = X n Y n + Y n Z n + X n Z n S_n=X_n Y_n+Y_n Z_n+X_n Z_n Sn=XnYn+YnZn+XnZn。定义 M n = ∑ k = 1 n ( S k − E [ S k ∣ X 0 , Y 0 , Z 0 , . . . , X k − 1 , Y k − 1 , Z k − 1 ] ) M_n=\sum_{k=1}^n (S_k - {\mathbb E}[S_k | X_0,Y_0,Z_0,...,X_{k-1},Y_{k-1},Z_{k-1}]) Mn=k=1n(SkE[SkX0,Y0,Z0,...,Xk1,Yk1,Zk1]),则可以证明 { M n } \{M_n\} {Mn} 是鞅。下面想要计算 M n M_n Mn 的具体表达式,需要分情况讨论:

  • case1: X k − 1 Y k − 1 Z k − 1 > 0 X_{k-1}Y_{k-1}Z_{k-1}>0 Xk1Yk1Zk1>0,可以验证 E [ X k Y k ∣ X k − 1 = x , Y k − 1 = y ] = x y − 1 / 3 {\mathbb E}[X_k Y_k | X_{k-1}=x,Y_{k-1}=y] = xy-1/3 E[XkYkXk1=x,Yk1=y]=xy1/3,因此有 E [ S k ∣ X k − 1 , Y k − 1 , Z k − 1 ] = S k − 1 − 1 {\mathbb E}[S_k | X_{k-1},Y_{k-1},Z_{k-1}] = S_{k-1}-1 E[SkXk1,Yk1,Zk1]=Sk11
  • case2: X k − 1 = 0 X_{k-1}=0 Xk1=0,此时有 X k = 0 X_k=0 Xk=0 E [ S k ∣ X k − 1 , Y k − 1 , Z k − 1 ] = S k − 1 − 1 {\mathbb E}[S_k | X_{k-1},Y_{k-1},Z_{k-1}] = S_{k-1}-1 E[SkXk1,Yk1,Zk1]=Sk11

因此有 M n = S n − S 0 + n M_{n} = S_n-S_0+n Mn=SnS0+n,可以验证鞅的停时定理 3 条件成立,从而有 E [ M τ ] = E [ M 0 ] = 0 {\mathbb E}[M_{\tau}] = {\mathbb E}[M_0]=0 E[Mτ]=E[M0]=0,又有 E [ M τ ] = E S τ − E S 0 + E τ = E τ − E S 0 = 0 {\mathbb E}[M_\tau] = {\mathbb E}S_\tau - {\mathbb E}S_0 + {\mathbb E}\tau = {\mathbb E}\tau - {\mathbb E}S_0 = 0 E[Mτ]=ESτES0+Eτ=EτES0=0,因此 E τ = E S 0 = a b + b c + a c {\mathbb E}\tau={\mathbb E}S_0=ab+bc+ac Eτ=ES0=ab+bc+ac

Note:如何想到这样定义一个鞅?首先考虑一阶统计量 S n = X n + Y n + Z n S_n=X_n+Y_n+Z_n Sn=Xn+Yn+Zn 恒等于常数,因此考虑二阶统计量。

栗子 2(随机徘徊):一维随机徘徊, Y n Y_n Yn表示第 n n n 个时刻质点移动的距离, P ( Y n = 1 ) = P ( Y n = − 1 ) = 1 / 2 P(Y_n=1)=P(Y_n=-1)=1/2 P(Yn=1)=P(Yn=1)=1/2,在 n n n 时刻质点离开原点的距离为 X n = ∑ i = 1 n Y i X_n=\sum_{i=1}^n Y_i Xn=i=1nYi,其中 X 0 = 0 X_0=0 X0=0,容易验证 { X n } \{X_n\} {Xn} 关于 { Y n } \{Y_n\} {Yn} 是鞅。下面需要讨论:

  1. 从原点到达 1 的平均时间;
  2. a < 0 < b a<0<b a<0<b 为两个整数,质点先到达 a a a 的概率 P a P_a Pa
  3. a < 0 < b a<0<b a<0<b 为两个整数,质点到达 a a a b b b 的平均时间?

:(1) 定义停时 τ 1 = min ⁡ { n : X 0 = 0 , X n = 1 } \tau_1=\min \{n: X_0=0,X_n=1 \} τ1=min{n:X0=0,Xn=1},那么需要求 E τ {\mathbb E}\tau Eτ,可以考虑用鞅的停时定理 3,首先假设条件 E τ < ∞ {\mathbb E}\tau<\infty Eτ< 成立 E [ ∣ X n + 1 − X n ∣ ∣ Y 0 , . . . , Y n ] = E [ ∣ Y n + 1 ∣ ] = 1 {\mathbb E}[|X_{n+1}-X_n| | Y_0,...,Y_n]={\mathbb E}[|Y_{n+1}|]=1 E[Xn+1XnY0,...,Yn]=E[Yn+1]=1,于是停时定理 3 条件满足,那么就有 E X τ = E X 0 = 0 {\mathbb E}X_{\tau} = {\mathbb E}X_0=0 EXτ=EX0=0,但是根据停时的定义有 E X τ = 1 {\mathbb E}X_\tau=1 EXτ=1,矛盾,这说明假设 E τ < ∞ {\mathbb E}\tau<\infty Eτ< 不成立,所以 E τ = ∞ {\mathbb E}\tau=\infty Eτ=

(2) 设 τ {\tau} τ 表示从 0 0 0 出发达到 a a a b b b 的时间, τ \tau τ 关于 { Y n } \{Y_n\} {Yn} 是停时,容易验证 P ( τ < ∞ ∣ X 0 = 0 ) = 1 P(\tau<\infty | X_0=0)=1 P(τ<X0=0)=1,而且 ∣ X τ ∧ n ∣ ≤ max ⁡ − a , b |X_{\tau \wedge n}| \le \max{-a,b} Xτnmaxa,b,因此 E [ sup ⁡ n ∣ X τ ∧ n ∣ ] < ∞ {\mathbb E}[\sup_{n} |X_{\tau\wedge n}|]<\infty E[supnXτn]<鞅的停时定理 2 条件满足,因此有 E X τ = a P a + b P b = E X 0 = 0 {\mathbb E}X_\tau = aP_a + bP_b ={\mathbb E}X_0=0 EXτ=aPa+bPb=EX0=0,另外有 P a + P b = 1 P_a+P_b=1 Pa+Pb=1,于是可以得到 P a = b / ( b − a ) P_a=b/(b-a) Pa=b/(ba)

(3) 设 τ \tau τ 为从 0 0 0 出发达到 a a a b b b 的时间, τ \tau τ 关于 { Y n } \{Y_n\} {Yn} 是停时,接下来的关键就是构造一个新的鞅,使其与时间 n n n 产生直接的关系,这样利用停时定理的时候就能求得 E τ {\mathbb E}\tau Eτ。那么可以取 Z n = ∑ k = 1 n ( X k 2 − E [ X k 2 ∣ Y 0 , . . . , Y k − 1 ] ) {Z_n} = \sum_{k=1}^n (X_k^2 - {\mathbb E}[X_k^2 | Y_0,...,Y_{k-1}]) Zn=k=1n(Xk2E[Xk2Y0,...,Yk1]),关于 { Y n } \{Y_n \} {Yn} 是鞅,并且可以验证 E [ X k 2 ∣ Y 0 , . . . , Y k − 1 ] = E [ ( X k − 1 + Y k ) 2 ∣ Y 0 , . . . , Y k − 1 ] = X k − 1 2 + 1 {\mathbb E}[X_k^2 | Y_0,...,Y_{k-1}]={\mathbb E}[(X_{k-1}+Y_k)^2 | Y_0,...,Y_{k-1}] = X_{k-1}^2+1 E[Xk2Y0,...,Yk1]=E[(Xk1+Yk)2Y0,...,Yk1]=Xk12+1,因此有 Z n = X n 2 − n {Z_n}=X_n^2-n Zn=Xn2n。验证停时定理 3 的条件 E [ ∣ Z n + 1 − Z n ∣ ∣ Y 0 , . . . , Y n ] ≤ 2 ∣ X n ∣ E ∣ Y n + 1 ∣ + 1 + 1 ≤ 2 max ⁡ ( − a , b ) + 2 {\mathbb E}[|Z_{n+1}-Z_n| | Y_0,...,Y_n] \le 2|X_n|{\mathbb E}|Y_{n+1}| + 1+1 \le 2\max(-a,b)+2 E[Zn+1ZnY0,...,Yn]2XnEYn+1+1+12max(a,b)+2,根据停时定理 3 有 E Z τ = P a ( a 2 − E τ ) + P b ( b 2 − E τ ) = E Z 0 = 0 {\mathbb E}Z_\tau = P_a(a^2-{\mathbb E}\tau) + P_b(b^2 - {\mathbb E}\tau) = {\mathbb E}Z_0=0 EZτ=Pa(a2Eτ)+Pb(b2Eτ)=EZ0=0,故 E τ = − a b {\mathbb E}\tau=-ab Eτ=ab

Note:利用停时定理时,条件 E τ < ∞ {\mathbb E}\tau<\infty Eτ< 可以先假设成立,然后用求解的结果来验证。

3.12 连续鞅论

定义(鞅) { X ( t ) , t ≥ 0 } \{X(t), t\ge0\} {X(t),t0} 为一个随机过程,如果 { X ( t ) , t ≥ 0 } \{X(t),t\ge0\} {X(t),t0} 满足下列条件:

  1. (存在性)对任意的 t ≥ 0 t\ge0 t0,有 E ∣ X ( t ) ∣ < ∞ {\mathbb E}|X(t)|<\infty EX(t)<
  2. (鞅性)对任意的 0 ≤ t 0 < t 1 < ⋯ < t n < t n + 1 0\le t_0<t_1<\cdots<t_n<t_{n+1} 0t0<t1<<tn<tn+1,有 E [ X ( t n + 1 ) ∣ X ( t 1 ) , . . . , X ( t n ) ] = X ( t n ) {\mathbb E}[X(t_{n+1}) | X(t_1),...,X(t_n)] = X(t_{n}) E[X(tn+1)X(t1),...,X(tn)]=X(tn)

则称 { X ( t ) , t ≥ 0 } \{X(t),t\ge0\} {X(t),t0}

定义(上鞅) { X ( t ) , t ≥ 0 } \{X(t), t\ge0\} {X(t),t0} 为一个随机过程,如果 { X ( t ) , t ≥ 0 } \{X(t),t\ge0\} {X(t),t0} 满足下列条件:

  1. (存在性)对任意的 t ≥ 0 t\ge0 t0,有 E X ( t ) − < ∞ {\mathbb E}X(t)^-<\infty EX(t)<
  2. (鞅性)对任意的 0 ≤ t 0 < t 1 < ⋯ < t n < t n + 1 0\le t_0<t_1<\cdots<t_n<t_{n+1} 0t0<t1<<tn<tn+1,有 E [ X ( t n + 1 ) ∣ X ( t 1 ) , . . . , X ( t n ) ] ≤ X ( t n ) {\mathbb E}[X(t_{n+1}) | X(t_1),...,X(t_n)] \le X(t_{n}) E[X(tn+1)X(t1),...,X(tn)]X(tn)

则称 { X ( t ) , t ≥ 0 } \{X(t),t\ge0\} {X(t),t0}上鞅。下鞅定义类似。

定理 3.12(停时定理):设 { X ( t ) , t ≥ 0 } \{X(t),t\ge0\} {X(t),t0} 是鞅, τ \tau τ 是关于 { X ( t ) , t ≥ 0 } \{X(t),t\ge0\} {X(t),t0} 的停时,若 P ( τ < ∞ ) = 1 P(\tau<\infty)=1 P(τ<)=1,且 E [ sup ⁡ t ≥ 0 ∣ X τ ∧ t ∣ ] < ∞ {\mathbb E}[\sup_{t\ge0} |X_{\tau \wedge t}|] < \infty E[supt0Xτt]<,则 E X τ = E [ X ( 0 ) ] {\mathbb E}X_\tau = {\mathbb E}[X(0)] EXτ=E[X(0)]

最后给我的博客打个广告,欢迎光临
https://glooow1024.github.io/
https://glooow.gitee.io/

前面的一些博客链接如下
泛函分析专栏
高等数值分析专栏
随机过程专栏
随机过程1 绪论
随机过程2 平稳过程与二阶矩
离散鞅论1 | 基本概念
离散鞅论2 | 停时与停时定理
离散鞅论3 | 鞅论应用
泊松过程1 | 定义与基本性质
泊松过程2 | 泊松过程扩展
布朗运动 1 | 基本概念与性质
布朗运动 2 | 布朗运动的推广
马尔可夫过程1 | 基本概念
马尔可夫过程2 | 状态空间
连续参数马尔可夫链

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值