离散鞅论1 | 基本概念

3.1 条件概率

在初等概率论中,条件期望的概念比较好理解,有 E [ X ∣ Y = y j ] = ∑ i x i P ( X = x i ∣ Y = y j ) {\mathbb E}[X | Y = y_j] = \sum_i x_i P(X=x_i | Y = y_j) E[XY=yj]=ixiP(X=xiY=yj),得到的条件期望实际上是一个关于 Y = y j Y=y_j Y=yj 的函数。但是在现代概率论中,这一概念进行了推广,也变得更加抽象,严谨的数学定义需要高等概率的知识,本教程基本只需要建立直观理解就够了。

(不严谨地)简单来说,条件期望 E [ X ∣ Y ] {\mathbb E}[X | Y] E[XY] 是一个新的随机变量,也可以看作是随机变量 Y Y Y 的函数。也就是可以理解为 g ( Y ) g(Y) g(Y),这个函数由 X , Y X,Y X,Y 的性质所决定。

性质(可以用直觉来理解这些性质,培养一下数学直观):

  • E [ E [ X ∣ Y ] ] = E [ X ] {\mathbb E}[{\mathbb E}[X|Y]] = {\mathbb E}[X] E[E[XY]]=E[X]
  • E [ ∑ i a i X i ∣ Y ] = ∑ i a i E [ X i ∣ Y ] {\mathbb E}[\sum_i a_i X_i | Y] = \sum_i a_i {\mathbb E}[X_i |Y] E[iaiXiY]=iaiE[XiY]
  • E [ g ( X ) h ( Y ) ∣ Y ] = h ( Y ) E [ g ( X ) ∣ Y ] {\mathbb E}[g(X)h(Y) | Y] = h(Y) {\mathbb E}[g(X) | Y] E[g(X)h(Y)Y]=h(Y)E[g(X)Y] g ( X ) , h ( Y ) g(X),h(Y) g(X),h(Y) 为有界函数
  • E [ X ∣ X ] = X {\mathbb E}[X | X] = X E[XX]=X
  • X , Y X,Y X,Y 独立,则 E [ X ∣ Y ] = E [ X ] {\mathbb E}[X|Y] = {\mathbb E}[X] E[XY]=E[X]
  • E [ E [ X ∣ Y , Z ]   ∣   Y ∈ D j , Z ∈ D k ] = E [ X ∣ Y ∈ D j , Z ∈ D k ] {\mathbb E}[{\mathbb E}[X|Y,Z] ~|~ Y\in {\mathcal D}_j, Z\in{\mathcal D}_k] = {\mathbb E}[X | Y\in {\mathcal D}_j, Z\in{\mathcal D}_k] E[E[XY,Z]  YDj,ZDk]=E[XYDj,ZDk]
  • E [ E [ X ∣ Y , Z ]   ∣   Y ] = E [ X ∣ Y ] = E [ E [ X ∣ Y ]   ∣   Y , Z ] {\mathbb E}[{\mathbb E}[X|Y,Z] ~|~ Y] ={\mathbb E}[X|Y] = {\mathbb E}[{\mathbb E}[X|Y] ~|~ Y,Z] E[E[XY,Z]  Y]=E[XY]=E[E[XY]  Y,Z]

3.2 鞅的定义与基本性质

定义 ∀ n ≥ 0 \forall n\ge0 n0,若 (1) E ∣ X n ∣ < ∞ {\mathbb E} |X_n| < \infty EXn<;(2) E [ X n + 1 ∣ X 0 , . . . , X n ] = X n {\mathbb E}[X_{n+1} | X_0,...,X_n]=X_n E[Xn+1X0,...,Xn]=Xn,则过程 { X n , n ≥ 0 } \{X_n,n\ge0\} {Xn,n0} 称为鞅。

注:鞅过程和平稳过程没有相互包含关系,也不同于Markov过程。

有的时候 X n X_n Xn 不能直接观察,只能观察另一个过程 { Y n , n ≥ 0 } \{Y_n,n\ge0\} {Yn,n0},因此将鞅的定义进行推广。

定义(推广):设两个随即过程 { X n , n ≥ 0 } , { Y n , n ≥ 0 } \{X_n,n\ge0\},\{Y_n,n\ge0\} {Xn,n0},{Yn,n0},若满足 (1) E ∣ X n ∣ < ∞ {\mathbb E}|X_n|<\infty EXn<;(2) E [ X n + 1 ∣ Y 0 , . . . , Y n ] = X n {\mathbb E}[X_{n+1} | Y_0,...,Y_n] = X_n E[Xn+1Y0,...,Yn]=Xn,则称 { X n , n ≥ 0 } \{X_n,n\ge0\} {Xn,n0} 关于 { Y n , n ≥ 0 } \{Y_n,n\ge0\} {Yn,n0} 是鞅。

性质:

  • E [ X n ∣ Y 0 , . . . , Y n ] = X n {\mathbb E}[X_n | Y_0,...,Y_n] = X_n E[XnY0,...,Yn]=Xn,再推广可以有 E [ X n − k ∣ Y 0 , . . . , Y n ] = X n − k , k ≥ 0 {\mathbb E}[X_{n-k} | Y_0,...,Y_n] = X_{n-k}, k\ge0 E[XnkY0,...,Yn]=Xnk,k0
  • E [ X n + k ∣ Y 0 , . . . , Y n ] = X n + k , k ≥ 0 {\mathbb E}[X_{n+k} | Y_0,...,Y_n] = X_{n+k}, k\ge0 E[Xn+kY0,...,Yn]=Xn+k,k0
  • E X n + 1 = E X n = E X 0 {\mathbb E}X_{n+1} = {\mathbb E}X_n = {\mathbb E}X_0 EXn+1=EXn=EX0
  • g ( Y 0 , . . . , Y n ) g(Y_0,...,Y_n) g(Y0,...,Yn) 有界,则 E [ g ( Y 0 , . . . , Y n ) X n + k ∣ Y 0 , . . . , Y n ] = g ( Y 0 , . . . , Y n ) E [ X n + k ∣ Y 0 , . . . , Y n ] {\mathbb E}[g(Y_0,...,Y_n)X_{n+k} | Y_0,...,Y_n] = g(Y_0,...,Y_n){\mathbb E}[X_{n+k} | Y_0,...,Y_n] E[g(Y0,...,Yn)Xn+kY0,...,Yn]=g(Y0,...,Yn)E[Xn+kY0,...,Yn]
  • { X n , n ≥ 0 } , { Z n , n ≥ 0 } \{X_n,n\ge0\},\{Z_n,n\ge0\} {Xn,n0},{Zn,n0} 关于 { Y n , n ≥ 0 } \{Y_n,n\ge0\} {Yn,n0} 是鞅,则 { X n ± Z n } \{X_n\pm Z_n\} {Xn±Zn} 关于 { Y n , n ≥ 0 } \{Y_n,n\ge0\} {Yn,n0} 是鞅
  • { X n , n ≥ 0 } , { Z n , n ≥ 0 } \{X_n,n\ge0\},\{Z_n,n\ge0\} {Xn,n0},{Zn,n0} 关于 { Y n , n ≥ 0 } \{Y_n,n\ge0\} {Yn,n0} 是鞅,且 X n , Z n X_n,Z_n Xn,Zn 独立,则 { X n Z n } \{X_n Z_n\} {XnZn} 关于 { Y n , n ≥ 0 } \{Y_n,n\ge0\} {Yn,n0} 是鞅

注: E [ X n + 1 X n ] = E [ E [ X n + 1 X n ∣ Y 0 , . . . , Y n ] ] = E [ X n E [ X n + 1 ∣ Y 0 , . . . , Y n ] ] = E [ X n 2 ] {\mathbb E}[X_{n+1}X_n] = {\mathbb E}[{\mathbb E}[X_{n+1}X_n | Y_0,...,Y_n]] = {\mathbb E}[X_n {\mathbb E}[X_{n+1}|Y_0,...,Y_n]] = {\mathbb E}[X_n^2] E[Xn+1Xn]=E[E[Xn+1XnY0,...,Yn]]=E[XnE[Xn+1Y0,...,Yn]]=E[Xn2],说明鞅不是平稳过程。

3.3 鞅的举例与构造方法

栗子 3.1 Y 0 = 0 , { Y n , n ≥ 1 } Y_0=0,\{Y_n,n\ge1\} Y0=0,{Yn,n1} 独立同分布, E ∣ Y n ∣ < ∞ {\mathbb E}|Y_n|<\infty EYn< E Y n = 0 {\mathbb E}Y_n=0 EYn=0,取 X 0 = 0 , X n = ∑ i = 1 n Y i X_0=0,X_n=\sum_{i=1}^nY_i X0=0,Xn=i=1nYi,则 { X n , n ≥ 0 } \{X_n,n\ge0\} {Xn,n0} 关于 { Y n , n ≥ 0 } \{Y_n,n\ge0\} {Yn,n0} 是鞅。

栗子 3.2 Y 0 = 0 , { Y n , n ≥ 1 } Y_0=0,\{Y_n,n\ge1\} Y0=0,{Yn,n1} 独立同分布, E Y n = 0 , E Y n 2 = σ 2 {\mathbb E}Y_n=0, {\mathbb E}Y_n^2=\sigma^2 EYn=0,EYn2=σ2,取 X 0 = 0 , X n = ∑ i = 1 n Y i 2 − n σ 2 X_0=0,X_n = \sum_{i=1}^n Y_i^2-n\sigma^2 X0=0,Xn=i=1nYi2nσ2,则 { X n } \{X_n\} {Xn} 关于 { Y n } \{Y_n\} {Yn} 是鞅。

栗子 3.3(一般线性求和): X n = ∑ k = 0 n a k ( Y 0 , . . . , Y k − 1 ) ⋅ { f ( Z k ) − E [ f ( Z k ) ∣ Y 0 , . . . , Y k − 1 ] } X_n = \sum_{k=0}^n a_k(Y_0,...,Y_{k-1}) \cdot \{f(Z_k) - {\mathbb E}[f(Z_k)|Y_0,...,Y_{k-1}]\} Xn=k=0nak(Y0,...,Yk1){f(Zk)E[f(Zk)Y0,...,Yk1]},要求 E ∣ f ( Z k ) ∣ < ∞ {\mathbb E}|f(Z_k)|<\infty Ef(Zk)< ∣ a k ( y 0 , . . . , y k − 1 ) ∣ < A k , ∀ y 0 , . . . , y k − 1 |a_k(y_0,...,y_{k-1})|<A_k,\forall y_0,...,y_{k-1} ak(y0,...,yk1)<Ak,y0,...,yk1。(一般情况下取 a k = 1 a_k = 1 ak=1

栗子 3.4(Doob 鞅过程): X n = E [ X ∣ Y 0 , . . . , Y n ] X_n={\mathbb E}[X | Y_0,...,Y_n] Xn=E[XY0,...,Yn] { X n } \{X_n\} {Xn} 关于 { Y n } \{Y_n\} {Yn} 是鞅。

栗子 3.5(似然比构成的鞅):设 { Y n } \{Y_n\} {Yn} 独立同分布, f 0 , f 1 f_0,f_1 f0,f1 是概率密度函数(PDF), ∀ y , f 0 ( y ) > 0 \forall y,f_0(y)>0 y,f0(y)>0,令 X n = f 1 ( Y 0 ) ⋯ f 1 ( Y n ) f 0 ( Y 0 ) ⋯ f 0 ( Y n ) X_n=\frac{f_1(Y_0)\cdots f_1(Y_n)}{f_0(Y_0)\cdots f_0(Y_n)} Xn=f0(Y0)f0(Yn)f1(Y0)f1(Yn),当 Y n Y_n Yn 的PDF为 f 0 f_0 f0 时, { X n } \{X_n\} {Xn} 关于 { Y n } \{Y_n\} {Yn} 是鞅。

栗子 3.6 { Y n } \{Y_n\} {Yn} 为 Markov 链,状态空间为 S {\mathcal S} S,转移矩阵为 P P P,定义 F = ( f ( 0 ) , . . . , f ( i ) , . . . ) F=(f(0),...,f(i),...) F=(f(0),...,f(i),...) 为右特征向量, E ∣ f ( Y n ) ∣ < ∞ {\mathbb E}|f(Y_n)|<\infty Ef(Yn)<。令 X n = λ − n f ( Y n ) X_n = \lambda^{-n} f(Y_n) Xn=λnf(Yn),则 { X n } \{X_n\} {Xn} 关于 { Y n } \{Y_n\} {Yn} 是鞅。

证明: E ∣ X n ∣ = λ − n E ∣ f ( Y n ) ∣ < ∞ {\mathbb E}|X_n| = \lambda^{-n} {\mathbb E}|f(Y_n)|<\infty EXn=λnEf(Yn)<
E [ X n + 1 ∣ Y 0 , . . . , Y n ] = E [ λ − n − 1 f ( Y n + 1 ) ∣ Y n ] = λ − n − 1 ∑ j ∈ S f ( y j ) P ( Y n + 1 = y j ∣ Y n ) = λ − n f ( Y n ) {\mathbb E}[X_{n+1} | Y_0,...,Y_n] = {\mathbb E}[\lambda^{-n-1} f(Y_{n+1}) | Y_n] = \lambda^{-n-1} \sum_{j\in{\mathcal S}} f(y_j)P(Y_{n+1}=y_j|Y_n)=\lambda^{-n} f(Y_n) E[Xn+1Y0,...,Yn]=E[λn1f(Yn+1)Yn]=λn1jSf(yj)P(Yn+1=yjYn)=λnf(Yn)
栗子 3.7(分支过程构造):设 Z ( n ) ( j ) Z^{(n)}(j) Z(n)(j) 表示第 n n n 代第 j j j 个个体产生的个体数目, Z ( n ) ( i ) ( i = 1 , 2 , . . . ) Z^{(n)}(i)(i=1,2,...) Z(n)(i)(i=1,2,...) 独立同分布, E [ Z ( n ) ( i ) ] = m {\mathbb E}[Z^{(n)}(i)]=m E[Z(n)(i)]=m Y n + 1 = Z ( n ) ( 1 ) + ⋯ + Z ( n ) ( Y n ) Y_{n+1} = Z^{(n)}(1) + \cdots + Z^{(n)}(Y_n) Yn+1=Z(n)(1)++Z(n)(Yn),则 X n = m − n Y n X_n=m^{-n}Y_n Xn=mnYn 关于 { Y n } \{Y_n\} {Yn} 是鞅。 E [ Y n + 1 ∣ Y n ] = Y n E [ Z ( n ) ( 1 ) ] = m Y n {\mathbb E}[Y_{n+1} | Y_n] = Y_n {\mathbb E}[Z^{(n)}(1)] = mY_n E[Yn+1Yn]=YnE[Z(n)(1)]=mYn

栗子 3.8(Wald鞅): Y 0 = 0 , { Y n } Y_0=0,\{Y_n\} Y0=0,{Yn} 独立同分布, ϕ ( λ ) = E [ exp ⁡ ( λ Y n ) ] \phi(\lambda)={\mathbb E}[\exp(\lambda Y_n)] ϕ(λ)=E[exp(λYn)] X 0 = 1 , X n = ϕ − n ( λ ) exp ⁡ [ λ ( Y 1 + ⋯ + Y n ) ] X_0=1,X_n=\phi^{-n}(\lambda)\exp[\lambda (Y_1+\cdots+Y_n)] X0=1,Xn=ϕn(λ)exp[λ(Y1++Yn)] { X n } \{X_n\} {Xn} 关于 { Y n } \{Y_n\} {Yn} 是鞅。

证明:定义 S n = ∑ k = 1 n Y k S_n=\sum_{k=1}^n Y_k Sn=k=1nYk,结合栗子 3.6 可知 { X n } \{X_n\} {Xn} 关于 { S n } \{S_n\} {Sn} 是鞅,由于 S 1 , . . . , S n S_1,...,S_n S1,...,Sn Y 1 , . . . , Y n Y_1,...,Y_n Y1,...,Yn 可以相互表示,因此 { X n } \{X_n\} {Xn} 关于 { Y n } \{Y_n\} {Yn} 也是鞅。

栗子 3.9(R-N导数构成的鞅):设 Z ∼ U [ 0 , 1 ] Z\sim U[0,1] ZU[0,1] f f f [ 0 , 1 ] [0,1] [0,1] 上的有界函数,令 X n = 2 n [ f ( Y n + 2 − n ) − f ( Y n ) ] X_n=2^n [f(Y_n+2^{-n}) - f(Y_n)] Xn=2n[f(Yn+2n)f(Yn)],而 Y n = ∑ k = 0 2 n − 1 k 2 n 1 { k / 2 n ≤ Z < ( k + 1 ) / 2 n } Y_n=\sum_{k=0}^{2^n-1} \frac{k}{2^n} {\mathbf 1}_{\{k/2^n \le Z < (k+1)/2^n\}} Yn=k=02n12nk1{k/2nZ<(k+1)/2n},则 { X n } \{X_n\} {Xn} 关于 { Y n } \{Y_n\} {Yn} 是鞅。

证明:在 Y 0 , . . . , Y n Y_0,...,Y_n Y0,...,Yn 条件下, Z Z Z 服从 [ Y n , Y n + 2 − n ) [Y_n,Y_n+2^{-n}) [Yn,Yn+2n) 的均匀分布,并且 Y n + 1 Y_{n+1} Yn+1 以相同的概率等于 Y n Y_n Yn 或者 Y n + 2 − n − 1 Y_n+2^{-n-1} Yn+2n1,于是有
E [ X n + 1 ∣ Y 0 , . . . , Y n ] = 2 n + 1 E [ f ( Y n + 1 + 2 − n − 1 ) − f ( Y n + 1 ) ∣ Y 0 , . . . , Y n ] = 2 n + 1 { 1 2 [ f ( Y n + 2 − n − 1 ) − f ( Y n ) ] + 1 2 [ f ( Y n + 2 − n ) − f ( Y n + 2 − n − 1 ) ] } = X n \begin{aligned} {\mathbb E}[X_{n+1} | Y_0,...,Y_n] &= 2^{n+1} {\mathbb E}[f(Y_{n+1}+2^{-n-1})-f(Y_{n+1}) | Y_0,...,Y_n] \\ &= 2^{n+1}\left\{ \frac{1}{2} [f(Y_n+2^{-n-1})-f(Y_n)] + \frac{1}{2}[f(Y_n+2^{-n}) - f(Y_n+2^{-n-1})] \right\} \\ &= X_n \end{aligned} E[Xn+1Y0,...,Yn]=2n+1E[f(Yn+1+2n1)f(Yn+1)Y0,...,Yn]=2n+1{21[f(Yn+2n1)f(Yn)]+21[f(Yn+2n)f(Yn+2n1)]}=Xn

小结(鞅的构造方法):

  1. 满足 Markov 性的序列,若满足 E [ X n + 1 ∣ X n ] = λ X n {\mathbb E}[X_{n+1} | X_n] = \lambda X_n E[Xn+1Xn]=λXn,则 Z n = λ − n X n Z_n = \lambda^{-n} X_n Zn=λnXn 构成一个鞅;
  2. 满足 Markov 性的序列,若满足 E [ g ( X n + 1 ) ∣ X n ] = f ( λ ) g ( X n ) {\mathbb E}[g(X_{n+1}) | X_n] = f(\lambda) g(X_n) E[g(Xn+1)Xn]=f(λ)g(Xn) g ( x ) g(x) g(x) 为有界函数, f ( λ ) ≠ 0 f(\lambda)\ne0 f(λ)=0,则 Z n = f ( λ ) − n g ( X n ) Z_n = f(\lambda)^{-n} g(X_n) Zn=f(λ)ng(Xn) 构成一个鞅;
  3. 一般线性求和。

3.4 上鞅、下鞅的定义及基本性质

定义:随机过程 { X n , n ≥ 0 } , { Y n , n ≥ 0 } \{X_n,n\ge0\},\{Y_n,n\ge0\} {Xn,n0},{Yn,n0} 满足下列条件:

  1. E [ X − ] > ∞ , x − : = min ⁡ ( x , 0 ) {\mathbb E}[X^-]>\infty, x^-:=\min(x,0) E[X]>,x:=min(x,0)
  2. E [ X n + 1 ∣ Y 0 , . . . , Y n ] ≤ X n {\mathbb E}[X_{n+1} | Y_0,...,Y_n] \le X_n E[Xn+1Y0,...,Yn]Xn
  3. X n X_n Xn Y 0 , . . . , Y n Y_0,...,Y_n Y0,...,Yn 的函数;

则称 { X n } \{X_n\} {Xn} 关于 { Y n } \{Y_n\} {Yn} 是上鞅。同理可定义下鞅。

性质

  • 上鞅 { X n } \{X_n\} {Xn},则 E [ X n + k ∣ Y 0 , . . . , Y n ] ≤ X n , ∀ k ≥ 0 {\mathbb E}[X_{n+k} | Y_0,...,Y_n]\le X_n,\forall k\ge0 E[Xn+kY0,...,Yn]Xn,k0
  • 上鞅 { X n } \{X_n\} {Xn},则 E [ X n ] ≤ E X k ≤ E X 0 , 0 ≤ k ≤ n {\mathbb E}[X_n] \le {\mathbb E}X_k \le {\mathbb E}X_0,0\le k\le n E[Xn]EXkEX0,0kn
  • 上鞅 { X n } \{X_n\} {Xn} g ( Y 0 , . . . , Y n ) g(Y_0,...,Y_n) g(Y0,...,Yn) 是非负函数,则 E [ g ( Y 0 , . . . , Y n ) X n + k ∣ Y 0 , . . . , Y n ] = g ( Y 0 , . . . , Y n ) E [ X n + k ∣ Y 0 , . . . , Y n ] {\mathbb E}[g(Y_0,...,Y_n)X_{n+k} | Y_0,...,Y_n] = g(Y_0,...,Y_n) {\mathbb E}[X_{n+k} | Y_0,...,Y_n] E[g(Y0,...,Yn)Xn+kY0,...,Yn]=g(Y0,...,Yn)E[Xn+kY0,...,Yn]
  • { X n } , { Z n } \{X_n\},\{Z_n\} {Xn},{Zn} 关于 { Y n } \{Y_n\} {Yn} 是上(下)鞅,则 { X n + Z n } \{X_n+Z_n\} {Xn+Zn} 关于 { Y n } \{Y_n\} {Yn} 是上(下)鞅
  • { X n } , { Z n } \{X_n\},\{Z_n\} {Xn},{Zn} 关于 { Y n } \{Y_n\} {Yn} 是上鞅,且 X n , Z n X_n,Z_n Xn,Zn 相互独立,则 { X n Z n } \{X_nZ_n\} {XnZn} 关于 { Y n } \{Y_n\} {Yn} 是上鞅(应该要求 X n , Z n ≥ 0 X_n,Z_n\ge0 Xn,Zn0???)

3.5 Jensen不等式与下鞅的构造

定理 3.1:若 { X n } \{X_n\} {Xn} 关于 { Y n } \{Y_n\} {Yn} 是鞅, φ ( x ) \varphi(x) φ(x) 为一个凸函数,且对 ∀ n \forall n n E [ φ ( X n ) + ] < ∞ {\mathbb E}[\varphi(X_n)^+]<\infty E[φ(Xn)+]<,则 { φ ( X n ) } \{\varphi(X_n)\} {φ(Xn)} 关于 { Y n } \{Y_n\} {Yn} 是下鞅。

推论 3.1.1:若 { X n } \{X_n\} {Xn} 关于 { Y n } \{Y_n\} {Yn} 是鞅,对 ∀ n \forall n n E [ X n 2 ] < ∞ {\mathbb E}[X_n^2]<\infty E[Xn2]<,则 { ∣ X n ∣ } , { X n 2 } \{|X_n|\},\{X_n^2\} {Xn},{Xn2} 关于 { Y n } \{Y_n\} {Yn} 是下鞅。

推论 3.1.2:若 { X n } \{X_n\} {Xn} 关于 { Y n } \{Y_n\} {Yn} 是鞅,对 ∀ n , p ≥ 1 \forall n,p\ge1 n,p1 E [ ∣ X n p ∣ ] < ∞ {\mathbb E}[|X_n^p|]<\infty E[Xnp]<,则 { ∣ X n ∣ p } \{|X_n|^p\} {Xnp} 关于 { Y n } \{Y_n\} {Yn} 是下鞅。

3.6 分解定理

定理 3.2(分解定理):对任意一个 { X n } \{X_n\} {Xn} 关于 { Y n } \{Y_n\} {Yn} 的下鞅,必存在过程 { M n } , { Z n } \{M_n\},\{Z_n\} {Mn},{Zn} 使得

  1. { M n } \{M_n\} {Mn} 关于 { Y n } \{Y_n\} {Yn} 是鞅
  2. Z n Z_n Zn Y 0 , . . . , Y n Y_0,...,Y_n Y0,...,Yn 的函数,且满足 Z 1 = 0 , Z n ≤ Z n + 1 , E Z n < ∞ Z_1=0,Z_n\le Z_{n+1},{\mathbb E}Z_n<\infty Z1=0,ZnZn+1,EZn<
  3. X n = M n + Z n X_n=M_n+Z_n Xn=Mn+Zn

且上述分解是唯一的。

证明:证明的思路是首先构造出来这样一对 M n , Z n M_n,Z_n Mn,Zn,然后证明他们确实满足条件,最后再证明唯一性。

构造 Z n = ∑ k = 1 n E [ X k − X k − 1 ∣ Y 0 , . . . , Y n ] Z_n = \sum_{k=1}^n{\mathbb E}[X_k -X_{k-1}| Y_0,...,Y_n] Zn=k=1nE[XkXk1Y0,...,Yn] M n = X n − Z n M_n=X_n-Z_n Mn=XnZn,可以验证 { M n } \{M_n\} {Mn} 是鞅并且 Z n Z_n Zn Y 0 , . . . , Y n Y_0,...,Y_n Y0,...,Yn 的非负单调非降函数。唯一性证明用反证法。证毕。

推论 3.2.1:对任意一个 { X n } \{X_n\} {Xn} 关于 { Y n } \{Y_n\} {Yn} 的上鞅,必存在过程 { M n } , { Z n } \{M_n\},\{Z_n\} {Mn},{Zn} 使得

  1. { M n } \{M_n\} {Mn} 关于 { Y n } \{Y_n\} {Yn} 是鞅
  2. Z n Z_n Zn Y 0 , . . . , Y n Y_0,...,Y_n Y0,...,Yn 的函数,且满足 Z 1 = 0 , Z n ≤ Z n + 1 , E Z n < ∞ Z_1=0,Z_n\le Z_{n+1},{\mathbb E}Z_n<\infty Z1=0,ZnZn+1,EZn<
  3. X n = M n − Z n X_n=M_n-Z_n Xn=MnZn

且上述分解是唯一的。

最后给我的博客打个广告,欢迎光临
https://glooow1024.github.io/
https://glooow.gitee.io/

前面的一些博客链接如下
泛函分析专栏
高等数值分析专栏
随机过程专栏
随机过程1 绪论
随机过程2 平稳过程与二阶矩
离散鞅论1 | 基本概念
离散鞅论2 | 停时与停时定理
离散鞅论3 | 鞅论应用
泊松过程1 | 定义与基本性质
泊松过程2 | 泊松过程扩展
布朗运动 1 | 基本概念与性质
布朗运动 2 | 布朗运动的推广
马尔可夫过程1 | 基本概念
马尔可夫过程2 | 状态空间
连续参数马尔可夫链

  • 1
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值