最近正在下载关于ScanNet的数据集,希望做一个深度的调查,以供自己学习
背景
作者是Angela Dai 是斯坦福大学的一名博士生,她最初的想法是,推动数据匮乏的机器学习算法的发展,特别是在 3D 数据上。
Scannet数据采集框架
- 收集3D重建数据,用有效的方式对数据进行标注,来收集更多数据。团队通过收集RGB-D的视频序列,通过ipad应用加深传感器而收集的,然后视频会被上传到服务器,并被自动重建。然后,视频会被给到亚马逊 Mechanical Turk,将标注工作众包出去。就是下面的这个女人::
- 数据标注是在一个给定的3D场景中,绘制出物体,可以是椅子、桌子或者计算机,从而了解每个物体,以及对应的所在位置。每个图像通常需要5个人来标注。所得数据可以在做物体分类这样的训练任务。主要的任务就是给3D数据赋予语义解释,这样有利于机器人更好的理解世界。
ScanNet数据集
- 数据集介绍:一共1513个采集场景数据(每个场景中点云数量都不一样,如果要用到端到端可能需要采样,使每一个场景的点都相同),共21个类别的对象,其中,1201个场景用于训练,312个场景用于测试
- **2D数据