GGUF模型转换入门

一、定义

1 定义
2 案例
3. 模型转gguf

二、实现

  1. 定义
    GGUF是一种大模型文件格式,由开发者Georgi Gerganov提出。
    这是一种针对大规模机器学习模型设计的二进制格式文件规范。它的主要优势在于能够将原始的大模型预训练结果经过特定优化后转换成这种格式,从而可以更快地被载入使用,并消耗更低的资源。
  2. 案例
    GGUF 模型是为了方面模型在cpu 上加载 ,如果在gpu 上使用,则没有必要转换为gguf 格式。
    转换与模型加载 见llama-cpp模型轻量化部署与量化
    在这里插入图片描述
cd llama.cpp
python convert-hf-to-gguf.py /home/LLaMA-Factory/megred-model-path --outfile /home/llama3-8b-chinese-GGUF/llama3-8b-chinese-v1.gguf
  1. 模型转gguf
    借助llama.cpp 进行转换在这里插入图片描述
# 如果不量化,保留模型的效果
python llama.cpp/convert_hf_to_gguf.py ./qwen2_0.5
模型转换gguf格式通常是指将机器学习模型保存为通用格式,以便在不同的编程语言或平台之间进行迁移或共享。虽然“gguf”格式不是一个广泛认可的标准格式,但您可能是想要提到的是“ggplot”风格的可视化方法,或者更常见的“guf”格式,但目前没有名为“gguf”的标准模型保存格式。这里我将假设您是在询问如何将模型保存为通用格式。 在Python中,一个常用的通用模型保存格式是PMML(Predictive Model Markup Language),它是一个基于XML的标准格式,用于描述和交换预测模型。另一个广泛使用的通用格式是ONNX(Open Neural Network Exchange),它允许不同机器学习框架之间的模型转换和共享。 以下是将Python中的scikit-learn模型保存为PMML格式的大致步骤: 1. 安装必要的转换库,例如`pmml`库。 2. 使用该库提供的函数将训练好的模型转换为PMML格式。 示例代码如下: ```python from sklearn2pmml import pmml_exporter from sklearn.datasets import load_iris from sklearn.ensemble import RandomForestClassifier # 加载数据 iris = load_iris() X = iris.data y = iris.target # 训练模型 clf = RandomForestClassifier() clf.fit(X, y) # 将模型导出为PMML pmml_exporter = pmml_exporter.PMMLExporter( model=clf, name="iris_model", version=1.0, description="Iris classification", input_fields=[ # 这里定义输入字段,对应于模型的特征 ], output_fields=[ # 这里定义输出字段,对应于模型的预测结果 ] ) pmml_exporter.export_to_zipped_file("iris_model.pmml.zip") ``` 如果是ONNX格式,转换过程类似,但需要使用不同的库和函数,例如使用`onnx`和`sklearn-onnx`库。 请注意,不同的模型类型和框架可能需要不同的转换方法和工具。建议查阅相关框架和模型的具体文档来获取详细的转换指南。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值