Brief
我们知道keras的后台之一就是tf,今天迷了一天的一个问题是:
在keras搭建好了网络但是无法使用GPU加速,通过命令
watch -n1 gpustat
查看GPU的占用率发现无论如何都是0%,再通过指令:
top
查看对应的CPU进程,发现CPU的占用很大,快接近1G的内存占用
解决办法
最开始以为是安装成了cpu版本的tf。用pip list
查看对应的python包,我们发现并没有cpu版本的tf,假如有的话,如果CPU版本比GPU的版本高,的确会使用CPU;但是我们的没有,后面经过了多方测试,发现tf需要和对应的cuda版本适应。所以问题就解决了;‘为了方便先给出tf对应的CUDA版本号如下:
- 卸载带当前环境下的 tf和keras:
pip uninstall tensorflow-gpu tensorflow keras
- 安装对应版本的tf:
pip3 install tensorflow-gpu==verson -i https://pypi.tuna.tsinghua.edu.cn/simple
用对应的版本号代替verson。
好了问题就此解决!!