在没有tensorflow-cpu版本下tf,keras不能使用GPU问题的解决

Brief

 我们知道keras的后台之一就是tf,今天迷了一天的一个问题是:
在keras搭建好了网络但是无法使用GPU加速,通过命令
watch -n1 gpustat
查看GPU的占用率发现无论如何都是0%,再通过指令:
top
查看对应的CPU进程,发现CPU的占用很大,快接近1G的内存占用

解决办法

最开始以为是安装成了cpu版本的tf。用pip list查看对应的python包,我们发现并没有cpu版本的tf,假如有的话,如果CPU版本比GPU的版本高,的确会使用CPU;但是我们的没有,后面经过了多方测试,发现tf需要和对应的cuda版本适应。所以问题就解决了;‘为了方便先给出tf对应的CUDA版本号如下:
在这里插入图片描述

  • 卸载带当前环境下的 tf和keras: pip uninstall tensorflow-gpu tensorflow keras
  • 安装对应版本的tf: pip3 install tensorflow-gpu==verson -i https://pypi.tuna.tsinghua.edu.cn/simple 用对应的版本号代替verson。

好了问题就此解决!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值