DeepSeek + Dify + Docker 零代码!一键搭建本地私有AI知识库


颠覆认知: 你是否认为开发AI应用需要编程能力?现在,DeepSeek + Dify 打破这一认知,通过 Dify 的拖拽式界面,任何人都能轻松开发出符合企业需求的AI应用!

神操作: 无论是开发 智能客服、合同审查工具、还是 竞品分析仪,都可以通过 Dify 快速搭建。上传Excel表格,系统自动生成数据报告,接入微信或其他平台,马上打造一个24小时在线的问答机器人。

实际案例: 某律所通过 Dify + DeepSeek,仅用了 3天 就开发出了一个“法律条款检索系统”,新人律师的工作效率提升了 200%!通过零代码开发,他们在短时间内完成了AI应用的部署,节省了大量的开发成本。

一、Docker下载和安装
1. 下载Docker

打开官网链接:https://www.docker.com/ 点击Download Docker Desktop选择“Download for Windows - AMD64”下载
在这里插入图片描述

2. 安装Docker

一路下一步,双击”Docker Desktop Installer.exe”自动安装完成。

3. 配置Docker 镜像路径

,打开“Docker Desktop”软件然后配置镜像地址,点击”Settings”—“Resources”—”Advanced”先配置镜像存储位置Disk image location例如存储路径:“E:\Docker\DockerDesktopWSL”
在这里插入图片描述

4. 配置Docker 下载镜像源

再点击“Docker Engine”配置,用途是解决拉取镜像失败的情况,新增配置如下:
在这里插入图片描述

直接复制覆盖即可

{
  "builder": {
    "gc": {
      "defaultKeepStorage": "20GB",
      "enabled": true
    }
  },
  "experimental": false,
  "registry-mirrors": [
    "https://dockerpull.org",
    "https://docker.1panel.dev",
    "https://docker.foreverlink.love",
    "https://docker.fxxk.dedyn.io",
    "https://docker.xn--6oq72ry9d5zx.cn",
    "https://docker.zhai.cm",
    "https://docker.5z5f.com",
    "https://a.ussh.net",
    "https://docker.cloudlayer.icu",
    "https://hub.littlediary.cn",
    "https://hub.crdz.gq",
    "https://docker.unsee.tech",
    "https://docker.kejilion.pro",
    "https://registry.dockermirror.com",
    "https://hub.rat.dev",
    "https://dhub.kubesre.xyz",
    "https://docker.nastool.de",
    "https://docker.udayun.com",
    "https://docker.rainbond.cc",
    "https://hub.geekery.cn",
    "https://docker.1panelproxy.com",
    "https://atomhub.openatom.cn",
    "https://docker.m.daocloud.io",
    "https://docker.1ms.run",
    "https://docker.linkedbus.com"
  ]
}
5. 重启Docker服务

点击右下角【Apply & restart】,等待完成即可。

二、Ollama 下载、安装

本地部署DeepSeek + Ollama 小白也能轻松搞定!

三、Dify 下载和安装
3.1. Dify下载

Dify项目github地址:https://github.com/langgenius/dify
在这里插入图片描述
下载链接:https://github.com/langgenius/dify/archive/refs/heads/main.zip

3.2. Dify 配置

解压dify-main.zip包,重命名dify-main名称为dify
dify\docker目录下的.env.example文件重命名为.env
在这里插入图片描述
在这里插入图片描述
编辑.env文件,在最后添加2行配置

# 启用自定义模型
CUSTOM_MODEL_ENABLED=true

# 指定 Ollama 的 API 地址(根据部署环境调整 IP)
OLLAMA_API_BASE_URL=host.docker.internal:11434

在这里插入图片描述

3.3. Dify 安装

然后在“docker”文件夹下的空白处右击”在终端中打开”会弹出“windows powershell”窗口,在命令行中键入“docker compose up -d”拉取镜像依赖环境

docker compose up -d

在这里插入图片描述

3.4. Dify创建账号

http://127.0.0.1/install

http://127.0.0.1/install

在这里插入图片描述
登录
在这里插入图片描述
在这里插入图片描述

四、Embedding模型下载

拉取“embedding”模型—”bge-m3”,打开网址:
https://ollama.com/library/bge-m3 点击复制“ollama pull bge-m3”置于命令行中按键盘“回车”拉取模型完成

ollama pull bge-m3

在这里插入图片描述

五、Dify 关联 DeepSeek (本地)
5.1. 配置 DeepSeek R1模型

在这里插入图片描述
在这里插入图片描述

模型名称:deepseek-r1:1.5b
基础 URL:http://host.docker.internal:11434

在这里插入图片描述

5.2. 配置embedding模型

继续配置embedding模型

在这里插入图片描述

模型名称:bge-m3
基础 URL:http://host.docker.internal:11434

在这里插入图片描述

5.3. 刷新浏览器,是配置生效

在这里插入图片描述
验证是否成功勾选DeepSeek模型
在这里插入图片描述
在这里插入图片描述

六、创建应用
6.1. 创建空白应用

在这里插入图片描述

6.2. 设置应用名称

在这里插入图片描述

6.3. 体验DeepSeek 模型服务

在这里插入图片描述

七、创建知识库
7.1. 创建知识库

在这里插入图片描述

7.2. 上传文件到知识库

在这里插入图片描述

点击下一步
在这里插入图片描述

7.3. 文件向量化化并加载到知识库

在这里插入图片描述

7.4. 查验加载进度

在这里插入图片描述

7.5. 体验 DeepSeek 本地私有AI知识库服务

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
答案是正确的。

八、Dify 集成DeepSeek(在线)
8.1. 注册账号

①先去官网注册账号:https://platform.deepseek.com/sign_in
在这里插入图片描述

8.2. 创建API密钥,并复制

在这里插入图片描述

8.3. 配置DeepSeek API密钥

在这里插入图片描述
在这里插入图片描述

8.4. 查验api状态

在这里插入图片描述

8.5. 体验DeepSeek 模型服务

在这里插入图片描述

### 配置和使用 DeepSeek #### 安装 Docker 和依赖项 为了在 Ubuntu 上成功运行 DeepSeek,首先需要确保系统已安装最新版本的 Docker 及其相关组件。这可以通过更新 APT 软件包索引来完成,并随后安装必要的 Docker 组件: ```bash sudo apt-get update sudo apt-get install docker-ce docker-ce-cli containerd.io docker-compose-plugin ``` 上述命令会准备环境以便后续操作能够顺利进行[^2]。 #### 启动并配置 DeepSeek 容器 一旦 Docker 已经正确设置完毕,在启动特定于 DeepSeek 的容器之前还需要拉取所需的镜像文件。对于 GPU 支持下的 DeepSeek 版本 `deepseek-r1:1.5b`,可以按照如下方式来创建一个新的容器实例: ```bash docker pull ollama/deepseek-r1:1.5b docker run --gpus all -dit --name=ollama ollama/deepseek-r1:1.5b ``` 这里 `-dit` 参数用于保持容器处于交互模式下运行;而 `--gpus all` 则指定了要分配给该容器的所有可用 GPU 设备资源[^1]。 #### 进入容器并与模型互动 当容器已经正常启动之后,就可以通过执行下面这条指令进入正在运行中的 Ollama 容器内部,并调用其中封装好的 DeepSeek 模型来进行各种任务处理了: ```bash docker exec -it ollama bash ollama run deepseek-r1:1.5b ``` 此过程允许用户直接访问到由 Docker 提供的服务端点,并利用内置工具集实现对 AI 模型的有效管理和应用开发工作流支持。 #### 测试与验证 最后一步是确认一切按预期运作良好。可以在终端内输入一些测试样例数据以观察输出结果是否符合期望值。如果遇到任何异常情况,则应检查日志记录或调整参数设定直至问题得到妥善解决为止。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gblfy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值