用扣子/Coze 揭秘吴恩达的4种 AI Agent 设计模式

来源:扣子Coze

吴恩达教授在美国红杉 AI 活动上关于 Agent 的最新趋势与洞察,提出了目前有 4 种主要的 Agent 设计模式,分别是:

  • Reflection:让 Agent 审视和修正自己生成的输出;

  • Tool Use:LLM 生成代码、调用 API 等进行实际操作;

  • Planning:让 Agent 分解复杂任务并按计划执行;

  • Multiagent Collaboration:多个 Agent 扮演不同角色合作完成任务;

🤩 在 扣子(coze.cn)/Coze (coze.com)上,可以将上述四种模式快捷落地,本文将以汽车行业调研助手、高质量旅行规划助手等实际案例来为大家分享落地思路。

1 Reflection模式

含义:让 Agent 审视和修正自己生成的输出。

背景:大模型的生成有时候会犯懒,可能只会部分执行Prompt导致效果有限。Reflection模式适用于让LLM自行审视和修正自己生成的输出,对生成内容进行多次自我调优,进而生成更加优质的内容。

场景:让 AI 或 LLM 说,写一个行业短评。开始写第一稿,自己阅读生成第一稿,思考哪些部分需要修改,然后,LLM进一步优化生成,可以一遍又一遍地进行。因此,这个工作流程是可迭代的,你可能让模型进行一些思考,然后修改文章,再思考,并通过多次迭代来完成这个过程。

流程图:

2ff66cffb065cc9a22e59a019c5dac58.png

🔥 Workflow实现简单“行业短评”效果

👉 工作流拆解:

  • 第一步:Start节点,用于接收用户的输入。

  • 第二步: 大模型节点,行业短评Prompt:使用真实数据、案例、SWOT模型,并言简意赅表达。

  • 第三步:基于其生成结果第二步中的大模型的生成结果,复制其Prompt,并进一步提示生成短评,达到审视和修正自己生成输出的效果,提高短评生成质量。

  • 第四步: 输出结果。

👉 示意图参考:

9da03d0684617d183b8acda99cc9e674.png

👀 效果:汽车行业调研短评

c13ff66d30c880880c43a4ba456705cd.gif

第一次:大模型对于提示,仅生成比较概括性的短评,使用了真实数据。

2cff308b595a228ffb3b1bb98a7fb3f2.png

第二次:大模型对生成结果进行迭代,生成了详细短评,不仅优化了表达内容,还增加了SWOT分析和案例分析。

90168cf2bb76aa8c6610d66683e6bd7d.png

2 Tool Use 模式

扣子/ Coze 本身就支持非常丰富的工具调用,欢迎使用!

065f6143c0ef876a73c4b7a7dc6ac099.png

3 Planning 模式

含义:Planning:让 Agent 分解复杂任务并按计划执行;

背景:大模型的生成依赖于训练数据的实效性,并且有时候会产生幻觉,导致生成的内容效果质量有限。Planning模式适用于让LLM基于计划好的任务步骤,对生成内容进行多次自我调优和加工处理,进而生成更加优质的内容。

场景:我们期望Agent具备类似人的行为的智能体,比如在调研报告场景,他会先使用搜索工具进行检索,筛选质量较高的内容,再进行一些思考,再进行重要信息的总结和整理,最后输出一个质量比较高的报告。

流程图:

2d78aba2b2ee4cae963f05aa8a73782a.png

🔥 Workflow实现Plannning模式的“行业短评”效果

👉 工作流拆解:

  • 第一步:Start节点,用于接收用户的输入。

  • 第二步: 通过“浏览器插件”,把用户的输入作为关键字进行搜索,返回相关的10个网站链接。

  • 第三步: 通过“头条搜索”访问这10个网站的详情内容,并返回。

  • 第四步: 使用大模型对这10个网站的内容进行打分,3分以上推荐引用。

  • 第五步: 通知用户:目前Agent已经完成阅读,正在整理并总结报告。

  • 第六步: 大模型对高分内容进行理解,使用真实数据、案例、SWOT模型等,并言简意赅表达。

    第七步: 输出报告。

👉  示意图参考:

3969eb9a1bf143f78c932d0fb5a50b73.png

👀 效果:奶茶行业调研短评

第一步: Agent完成网站访问和内容抽取后,告知了完成阅读。

第二步: 参考了他访问的一些网站内容,整理并总结了报告,最后打印报告输出。

d0ac42ec45e9b10216ae55676331beef.png

4 Multiagent Collaboration 模式

🔥 使用coze的Multi-agent功能实现高质量旅行规划

第一步:定义3个用于旅行规划场景的专家Agents

  • 目的地推荐专家: 调用搜索等能力,基于用户的需求推荐目的地。

  • 机票酒店专家: 调用机票、酒店的查询工具,根据用户的背景信息和诉求,推荐合适的机票酒店。

  • 行程规划专家: 根据用户的信息和其他专家产出的结果,帮助用户制定完整的行程规划,并将内容输出到PDF中。

第二步:将3个专家Agents排列到画布中,并为他们设置任务交接的条件。

第三步:开始对话

ff9c4e946fbd1ab431482e0d00addc4f.png

点击查看效果👆

🤖️ 三种模式的对比:

845c70904a33f5ad837f4979174e691b.png

4ab6b6625a86a51e3c868ae93b1aa439.png

END

分享

收藏

点赞

在看

4726958b183106ac28e4ae10bc6a510d.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值